Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

201.

Evaluate: cos45° cos30° + sin45° sin30°

Answer»

On substituting the values of various T-ratios, we get: 

cos45° cos30° + sin45° sin30°

\((\frac{1}{\sqrt2}\times\frac{\sqrt3}2+\frac{1}{\sqrt2}\times\frac{1}2)\) = \((\frac{\sqrt3}{2{\sqrt{2}}}+\frac{1}{2\sqrt{2}})\) = \((\frac{{\sqrt{3}}+1}{2\sqrt{2}})\)

202.

If tan x = \(\frac{4}{3}\), then the value of \(\sqrt{\frac{(1-sin\,x)(1+sin\,x)}{(1+cos\,x)(1-cos\,x)}}\) is(a) \(\frac{9}{16}\) (b) \(\frac34\)(c) \(\frac43\) (d) \(\frac{16}{9}\)

Answer»

(b) \(\frac34\)

 \(\sqrt{\frac{(1-sin\,x)(1+sin\,x)}{(1+cos\,x)(1-cos\,x)}}\) = \(\sqrt{\frac{1-sin^2\,x}{1-cos^2\,x}}\)      (∵ (a – b) (a+b) = a2 – b2)

\(\sqrt{\frac{cos^2\,x}{sin^2\,x}}\)                  (∵ sin2x + cos2x = 1)

\(\frac{cos\,x}{sin\,x}\) = cot θ = \(\frac{1}{tan\,\theta} = \frac{1}{\frac{4}{3}}=\frac34.\)

203.

Evaluate: cos60° cos30°− sin60° sin30°

Answer»

On substituting the values of various T-ratios, we get: 

cos60° cos30°− sin60° sin30°

\((\frac{1}2\times\frac{\sqrt{3}}2-\frac{\sqrt{3}}2\times\frac{1}2)\) = \((\frac{\sqrt{3}}4-\frac{\sqrt{3}}4)\) = 0

204.

Evaluate the following. sin 45° + cos 45°

Answer»

sin 45° + cos 45°

\(\frac{1}{\sqrt{2}}\) + \(\frac{1}{\sqrt{2}}\)

\(\frac{1+1}{\sqrt{2}}\)

\(\frac{2}{\sqrt{2}}\)

\(\frac{\sqrt{2}\times\sqrt{2}}{\sqrt{2}}\)

\(\sqrt{2}\)

205.

If a right △ABC , right-angled at B, if tan A =1 then verify that 2sin A . cos A = 1

Answer»

We have, 

Tan A = 1 

⇒ sinA/cosA = 1 

⇒ sin A = cos A

⇒ sin A − cos A = 0 

Squaring both sides, we get 

(sinA − cosA)2 = 0 

⇒ sin2A + cos2A − 2 sin A . cos A = 0 

⇒ 1 − 2 sin A . cos A = 0 

∴ 2 sin A . cosA = 1

206.

If a cos θ – b sin θ = c, show that a sin θ + b cos θ = ±√(a2 + b2 + c2).

Answer»

a cos θ – b sin θ = c 

⇒ (a cos θ – b sin θ)2 = c2 

(i.e) a2 cos2 θ + b2 sin2 θ – 2ab sin θ cos θ = c2 

(i.e) a2 (1 – sin2 θ) + b2 (1 – cos2 θ) – 2ab sin θ cos θ = c2 

a2 – a2 sin2 θ + b2 – b2 cos2 θ – 2ab sin θ cos θ = c2 

a2 + b2 – c2 = a2 sin2 θ + b2 cos2 θ + 2ab sin θ cos θ

(i.e.) (a sin θ + b cos θ)2 = ±√(a2 + b2 + c2)

a sin θ + b cos θ = ±√(a2 + b2 + c2)

207.

The value of `(8 sec^(4) theta- 8 tan^(4) theta)/( 4+8 tan^(2) theta )-(2 cos^(6)theta+2 sin^(6) theta )/(1-3 sin^(2) theta cos^(2) theta )` is ______

Answer» Correct Answer - A
(i) Put `theta =0` and simplify.
(ii) `sec^(4) theta-tan^(4)theta=sec^(2)theta+tan^(2)theta `.
(iii) `a^(3)+b^(3)=(A+b)^(3)-3ab(a+b).`
208.

(tan 60° - tan 30°)/(1 + tan 60°. Tan 30°) = ?(A) 1/√2(B) 1/√3(C) 1/√4(D) 1/√5

Answer»

The correct answer is (B) 1/√3.

On substituting the values of various T-ratios, we get

= (tan 60° - tan 30°)/(1 + tan 60°. Tan 30°)

= (√3 – 1/√3)/(1 + √3 x 1/√3)

= {(3 – 1)/√3}/(1 + 1)

= 2/2 x √3

= 1/√3

209.

If 2 sin 2 θ = √3 the value of θ is …….(A) 15°(B) 30°(C) 45°(D) 60°

Answer»

The correct answer is (B) 30°

We have,

2 sin 2 θ = √3

sin 2 θ = √3/2

sin 2 θ = sin 60°

2 θ = 60°

θ= 60°/2

θ = 30°

210.

If θ is an acute angle and sin θ = cos θ. The value of 2 tan2 θ + sin2 θ – 1 is(A) 1/2(B) 3/2(C) 5/2(D) 7/2

Answer»

The correct answer is (B) 3/2

We have,

sin θ = cos θ

sin θ/ cos θ = cos θ/ cos θ  [ Dividing both sides by cos θ]

tan θ = 1

tan θ = tan 45°

θ = 45°

2 tan2 θ + sin2 θ – 1

= 2 tan2 45° + sin245° - 1

= 2 (1)2 + (1/√2)2 – 1

= 2 + 1/2 – 1

= (4 + 1 – 2)/2

= 3/2

211.

If A and B are acute angles such that sin A = cos B then (A + B) = ?(A) 45°(B) 60°(C) 90°(D) 180°

Answer»

The correct answer is (C) 90°

sin A = cos B

cos (90° - A) = cos B   [sin A = cos (90° - A)]

90° - A = B

90° = A + B

A + B = 90°

212.

If cos 9α = sinα and 9α < 90° , then the value of tan5α is (A) 1/√3 (B) √3 (C) 1 (D) 0

Answer»

Correct answer is (C) 1

213.

What is the common systems of measuring angles?

Answer»

The common systems of measuring angles are:

(a) Sexagesimal System: Here, one complete revolution is divided into 360 equal parts, each called a degree, a degree is divided into sixty equal parts, each called a second. Thus, 

One complete revolution = 360° 

1° = 60' (minutes) 

1' = 60'' (seconds) 

(b) Circular System: The unit of measuring an angle in this system is radian. A radian is the measure of the central angle subtended by an arc equal in length to the radius of the circle. 1 radian is written as 1c.

214.

Without using trigonometric tables, prove that:(i) sin53° cos37° + cos53°sin37° = 1(ii) cos54°cos36° - sin54°sin36° = 0(iii) sec70°sin20° + cos20°cosec70° = 2

Answer»

(i) LHS =  sin53° cos37° + cos53°sin37°

= sin(90° - 37°)cos37° + cos(90° - 37°) sin 37°

= cos37°cos37° + sin 37° sin 37°

= cos2 37° + sin2 37°

= 1

= RHS

(ii) LHS =  cos54°cos36° - sin54°sin36°

= cos (90° - 36°)cos36° - sin(90° - 36°) sin 36°

= sin36°cos36° - cos 36° sin 36°

= 0

= RHS

(iii) LHS =  sec70°sin20° + cos20°cosec70°

= sec (90° - 20°)sin20° + cos20°cosec(90°- 20°

= cosec20° . 1/cosec20° + 1/sec 20°. sec20°

= 1 + 1

= 2

= RHS

215.

Find the value of x in each of the following:2 sin 3x = \(\sqrt3\)

Answer»

 2 sin 3x = \(\sqrt3\)

⇒ sin 3x = \(\frac{\sqrt3}2\)

⇒ sin 3x = sin 60°

⇒ 3x = 60°

⇒ x = 20°

216.

In triangle PQR, right-angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P.

Answer»

Solution
Let QR=x and PR=y
Then x+y=25
y=25-x
Now by Pythagorus theorem
x2  + 25= y2
x2  + 25 = (25-x)2
Solving it ,we get
X=12 cm
Then y=25-12=13 cm
Now sin P= 12/13
cos P=5/13
Tan P=12/5

217.

(i) The value of tan A is always less than 1. (ii) sec A = 12/5 for some value of angle A. (iii) cos A is the abbreviation used for the cosecant of angle A. (iv) cot A is the product of cot and A. (v) sin θ = 4/3 for some angle θ .

Answer»
  1. False , the value if tan 60° = √3= 1.73
  2. True, The value of sec A increase from 1 to ∞.
  3. False, Cos A is the abbreviation used for the cosine of angle A
  4. False, cot A is one symbol. We cannot separate it
  5. False, The value of sin θ always lies between 0 and 0 and 4/3 > 1
218.

Prove the following:2.sec2 θ – sec4 θ – 2.cosec2 θ + cosec4 θ = cot4 θ – tan4 θ

Answer»

LHS = 2.sec2 θ – sec4 θ – 2.cosec2 θ + cosec4 θ =  2 sec2 θ – (sec2 θ)2 – 2cosec2 θ + (cosec2 θ)2

= 2(1+ tan2 θ) – (1+ tan2 θ)2 – 2(1+ cot2 θ) + (1+ cot2 θ)2

= 2 + 2tan2 θ – (1 + 2tan2 θ + tan4 θ) – 2 – 2cot2 θ + 1 + 2cot2 θ + cot4 θ 

= 2 + 2.tan2 θ – 1 – 2 tan2 θ – tan4 θ – 2 – 2 cot2 θ + 1 + 2 cot2 θ + cot4 θ 

= cot4 θ – tan4 θ = R.H.S.

219.

Prove the following:(tan θ + 1/cos θ)2 + (tan θ - 1/ cos θ)2 = 2 (1+sin2θ/1-sin2θ)

Answer»

L.H.S. = (tan θ + 1/cos θ)2 + (tan θ - 1/cos θ)2 

= (tanθ + secθ)2 + (tanθ – secθ)2 

= tan2 θ + 2 tan θ sec θ + sec2 θ + tan2 θ – 2 tan θ sec θ +.sec2 θ 

= 2(tan2 θ + sec2 θ)

220.

If `cos(A-B)=(5)/(13) and sin(A+B)=(4)/(5)`, then find sin2B.

Answer» Correct Answer - `(-16)/(65)`
221.

Prove the following:  tan (π/4+θ) = 1+tanθ/1-tanθ

Answer»

L.H.S = tan(π/4+θ)

\(\frac{tan\frac{\pi}{4}+tan \theta}{1-tan\frac{\pi}{4}tan\theta}\)

\(\frac{1+tan\theta}{1-(1)tan\theta}\)

=\(\frac{1+tan\theta}{1-tan\theta}\)

=RHS

222.

Sin a/Cos a . Cot α =A) Tan αC) 1B) CotaD) -1

Answer»

Correct option is: C) 1

\(\frac{Sin\, \alpha}{Cos\, \alpha} . Cot\, \alpha =\) \(\frac {sin \,\alpha}{cos \, \alpha}. \frac {cos \, \alpha}{sin \, \alpha} = 1\) ( \(\because\) cot \(\alpha\) = \(\frac {cos \, \alpha}{sin \, \alpha}\))

Correct option is: C) 1

223.

If sin(A + B + C) = 1, then tan(A - B) = 1/√3 and sec(A + C) = 2, find A, B and C respectively when they are acute.(A) 60°, 0°, 30°(B) 30°, 60°, 90°(C) 60°, 30°, 0°(D) 0°,60°, 30°

Answer»

The correct option is: (C) 60°, 30°, 0°

Explanation:

We have, sin(A + B + C) = 1

 => sin(A + B + C) = sin 90°

=> A + B + C = 90°    ...(i)

Also, tan(A - B) = 1/√3 = tan 30°

=> A - B = 30°    ...(ii)

and sec (A + C) = 2 = sec 60°

=> A + C = 60°      ....(iii)

From (ii) and (iii), we get

B + C = 30°      ...(iv)

From (i) and (iv), we get, A = 60°

. .. B = 30°      [Using A = 60° in (ii)]

and C = 0°      [Using A = 60° in (iii)]

224.

Which of the following is the value of sin 90°? (A) √3/2(B) 0(C) 1/2(D) 1

Answer»

(D) The answer is 1

225.

If x = a sinθ and y = b cosθ,write the value of (b2x2 + a2y2).

Answer»

(b2x2 + a2y2)

= b2 (a sin θ)2 + a2 (b cos θ)

= b2a2 sin2 θ + a2b2 cos2 θ 

= a2b2 (sin2 θ + cos2 θ) 

= a2b2 (1) 

= a2b2

226.

Prove the following identities :1 – 2 cos2θ + cos4θ = sin4θ

Answer»

Taking LHS = 1 – 2 cos2 θ + cos4 θ

We know that,

cos2 θ + sin2 θ = 1

= 1– 2 cos2 θ + (cos2 θ)2

= 1 – 2 cos2 θ + (1 – sin2 θ)2

= 1 – 2 cos2 θ +1 + sin4 θ – 2sin2θ

= 2 – 2(cos2 θ + sin2θ) + sin4 θ

= 2 – 2(1) + sin4 θ

= sin4 θ

= RHS

Hence Proved

227.

Prove the following identities :1 – 2sin2θ + sin4θ = cos4θ

Answer»

Taking LHS = 1 – 2 sin2 θ + sin4 θ

We know that,

cos2 θ + sin2 θ = 1

= 1– 2 sin2 θ + (sin2 θ)2

= 1 – 2 sin2 θ + (1 – cos2 θ)2

= 1 – 2 sin2 θ +1 + cos4 θ – 2cos2θ

= 2 – 2(cos2 θ + sin2θ) + cos4 θ

= 2 – 2(1) + cos4 θ

= cos4 θ

= RHS

Hence Proved

228.

cos4θ – sin4θ =A) 1 – 2sin2θB) 2sin2θC) secθD) cosecθ

Answer»

Correct option is: A) \(1-2 \,sin^2\theta\)

\(cos^4 \theta – sin^4 \theta =\) \((cos^2\theta)^2 - (sin^2\theta)^2\)

\((cos^2\theta - sin^2\theta) (cos^2\theta + sin^2\theta)\)

(\(\because\) \(a^2-b^2 = (1-b) (a+b))\)

\(cos^2\theta - sin^2\theta \) (\(\because\) \(\cos^2\theta + sin^2\theta =1\))

\((1-sin^2\theta) - sin^2\theta \) ( \(\because\) \(cos^2\theta = 1-sin^2\theta\) )

\(1-2 \,sin^2\theta\) 

Correct option is: A) 1 – 2sin2θ

229.

Prove that cos4θ – sin4θ = 2cos2θ – 1

Answer»

L.H.S. cos4θ – sin4θ 

= (cos2θ)2 – (sin2θ)2 

= (cos2θ + sin2θ) (cos2θ – sin2θ) 

= 1 . (cos2θ – (1 – cos2θ) = cos2θ – 1 + cos2θ 

= 2cos2θ – 1 = R.H.S.

230.

The most general value of θ satisfying the equation sin θ = sin α and cos θ = cos α is (a) 2nπ + α(b) 2nπ – α (c) nπ + α (d) nπ – α

Answer»

Answer : (c) nπ + α 

Given, 

sin θ = sin α ...(i) 

cos θ = cos α ...(ii) 

∴ Dividing eqn (i) by eqn (ii), we have 

tan θ = tan α 

θ = nπ + α.

231.

Find the general solution of tan 2θ tan θ = 1.

Answer»

Given, tan 2θ tanθ = 1

⇒ \(\frac{ 2\,tan\theta}{1-tan^2\theta}\) . tanq =1 

⇒ \(\frac{ 2\,tan\theta}{1-tan^2\theta}\) =1 

⇒2 tan2 θ= 1− tan2 θ

⇒ 3 tanθ = 1 

⇒ tanθ = \(\frac{1}{3}\) 

⇒ tanθ = ( \(\frac{1}{\sqrt{3}}\) )2 = tan2 \(\frac{π}{6}\) 

⇒ θ = nπ ±  \(\frac{π}{6}\)

232.

Find the general values of θ if (i) 2 sin θ – 1 = 0 (ii) cos θ = \(-\frac{1}{2}\)(iii) 4 sin2θ = 1 (iv) tan 2x – \(\sqrt{3}\) = 0 (v) 2 cot2 θ = cosec2 θ

Answer»

(i) 2 sin θ – 1 = 0 

⇒sin θ = \(\frac{1}{2}\) = sin \(\frac{\pi}{6}\) 

⇒ θ = nπ + (–1)n \(\frac{\pi}{6}\) , n∈I 

(ii) cos θ =  − \(\frac{1}{2}\)

= cos (180° – 60°) = cos ( π - \(\frac{\pi}{3}\) ) = cos \(\frac{2\pi}{3}\)

∴ θ = 2nπ \(\pm\) \(\frac{2\pi}{3}\),  n∈I 

(iii) 4 sinθ = 1 

⇒ \(\frac{4(1-cos\,2\theta)}{2}\) = 1 

⇒ 2(1 - cos 2θ) =1 ⇒ 1-cos 2θ = \(\frac{1}{2}\) ⇒ cos 2θ = \(\frac{1}{2}\) = cos \(\frac{\pi}{3}\)

∴ 2θ = 2nπ ± \(\frac{\pi}{3}\) 

⇒ θ = nπ ± \(\frac{\pi}{6}\)

(iv) tan 2x – \(\sqrt{3}\) = 0 

⇒ tan 2x = \(\sqrt{3}\) = tan \(\frac{\pi}{3}\) 

⇒ 2x = nπ + \(\frac{\pi}{3}\) 

⇒ x = \(\frac{n\pi}{2}\) + \(\frac{\pi}{6}\) , n ∈ I 

(v) 2 cotθ = cosecθ 

⇒ 2 cotθ = 1 + cotθ 

⇒ cotθ = 1

⇒ cot θ = ± 1

= cot (± \(\frac{\pi}{4}\)

⇒ θ = nπ ± \(\frac{\pi}{4}\) ,  n ∈ I

233.

If the equation tan θ + tan 2θ + tan θ . tan 2θ = 1, θ =(a) \(\frac{nπ}{6}\) +\(\frac{π}{6}\)(b) \(\frac{nπ}{2}\) + 6(c) \(\frac{nπ}{3}\)+ \(\frac{π}{12}\)(d) \(\frac{nπ}{2}\)+\(\frac{π}{12}\)

Answer»

Answer : (c) \(\frac{n\pi}{3}\)\(\frac{\pi}{12}\)

tan θ + tan 2θ = 1 – tan θ . tan 2θ

⇒ \(\frac{tan\,θ +tan\,2θ}{1- tan\,θ\,tan\,2θ}\) =1

⇒ tan (θ + 2θ) = 1 \(\big( \because tan\,(A+B) = \frac{tan\,A+tan\,B}{1-tan\,A\,tan\,B}\big)\) 

⇒ tan 3θ = tan \(\frac{\pi}{4}\) 

⇒ 3θ = nπ + \(\frac{\pi}{4}\) 

θ = \(\frac{n\pi}{3}\)\(\frac{\pi}{12}\).

234.

The root of equation 1 – cos θ = sin θ.sin \(\frac{θ}{2}\) is (a) k π, k∈I (b) 2kπ, k∈I (c) k. \(\frac{π}{2}\), k ∈ I(d) None of these

Answer»

Answer : (b) 2kπ, k∈I   

1 – cos θ = sin θ . sin θ/2 

⇒ 2 sin2 θ/2 = 2 sin θ/2 . cos θ/2 . sin θ/2 

⇒ 2 sin2 θ/2 (1 – cos θ/2) = 0 

⇒ 2 sin2 θ/2 = 0 or 1 – cos θ/2 = 0 ⇒ sin θ/2 = 0 or 2 sin2 θ/4 = 0 

(Using, 1 – cos 2θ = 2 sin2 θ)

⇒ \(\frac{θ}{2}\) = kπ or \(\frac{θ}{2}\) = kπ , where k∈I.

⇒ θ = 2kπ or θ = 4kπ, k∈I. 

θ = 2kπ, k∈I

235.

The solution of the equation 4 cos2 x + 6 sin2 x = 5 are (a) x = nπ ± \(\frac{π}{4}\) (b) x = nπ ± \(\frac{π}{3}\)(c) x = nπ ± \(\frac{π}{2}\) (d) x = nπ ± \(\frac{2π}{3}\)

Answer»

Answer : (a)  \(x = nπ ± \frac{π}{4}\)

4 cos2 x + 6 sin2 x = 5 

⇒ 4 (cos2 x + sin2 x) + 2 sin2 x = 5 

⇒ 2 sin2 x = 5 – 4 = 1  ⇒ sin2 x = \(\frac{1}{2}\) 

⇒ sin x = ± \(\frac{1}{√2}\) 

\(x = nπ ± \frac{π}{4}\)

236.

The general value of θ obtained from the equation cos 2θ = sin α is (a)  θ = 2nπ ± \(\big(\) \(\frac{π}{2}\) - α \(\big)\)(b)  θ = \(\frac{nπ +(-1)^n\alpha}{2}\) (c)  θ = nπ ± \(\big(\) \(\frac{π}{4}\) - \(\frac{α}{2}\) \(\big)\)(d) 2θ = \(\frac{π}{2}\) –  α

Answer»

Answer : (c) =  θ = nπ ± \(\big( \frac{\pi}{4} -\frac{\alpha}{2}\big)\)

cos 2θ = sin α ⇒ cos 2θ = cos \(\big( \frac{\pi}{2} -\alpha\big)\) 

⇒ 2θ = 2nπ ± \(\big( \frac{\pi}{2} -\alpha\big)\) (∵ cos θ = cos α ⇒ θ = 2nπ ± α)

⇒ θ = nπ ± \(\big( \frac{\pi}{4} -\frac{\alpha}{2}\big)\)

237.

Sin θ = 1/2 then cot θ =A) 3 B) 7 C) √3 D) 2√3

Answer»

Correct option is: C) √3

sin \(\theta\) = \(\frac 12\) = sin \(30^\circ\)

\(\theta\) = \(30^\circ\)

\(\therefore\) cot \(\theta\) = cot \(30^\circ\) = \(\sqrt3\)

Correct option is: C) √3

238.

If 3 cos x ≠ 2 sin x, then find the general solution of sin2x – cos 2x = 2 – sin 2x.

Answer»

Given:

sin2x – cos 2x = 2 – sin 2x 

⇒ 1 – cos2x – (2cos2x – 1) 

= 2 – 2 sin x cos x 

⇒ – 3 cos2x + 2 sin x cos x = 0 

⇒ cos x (2 sin x – 3 cos x) = 0 ⇒ cos x = 0 (∵ 2 sin x ≠ 3 cos x)

⇒ x = 2nπ ± \(\frac{\pi}{2}\) 

⇒ x = (4n ± 1) \(\frac{\pi}{2}\) 

239.

x ∈ R: cos 2x + 2 cos2 x = 2 is equal to(a) 2nπ + \(\frac{π}{3}\) ,  n ∈ Z(b) nπ ± \(\frac{π}{6}\),  n ∈ Z(c) nπ + \(\frac{π}{3}\) , n ∈ Z(d) 2nπ - \(\frac{π}{3}\), n ∈ Z

Answer»

Answer : (b) nπ ± \(\frac{π}{6}\),  n ∈ Z 

cos 2x + 2 cosx = 2 

⇒ 2 cosx – 1 + 2 cosx = 2

⇒ 4 cos2 x = 3 

⇒ cos x = ± \(\frac{\sqrt{3}}{2}\) 

⇒ x = nπ ± \(\frac{π}{6}\), n∈Z

240.

The value of θ (0 &lt; θ &lt; 2 π) satisfying cosec θ + 2 = 0 are(a) 210°, 330° (b) 210°, 240° (c) 220°, 330° (d) 240°, 300°

Answer»

Answer: (a) 210°, 330° 

Given, cosec θ + 2 = 0 

⇒ cosec θ = –2 

⇒ sin θ = − \(\frac{1}{2}\) = – sin 30° 

⇒ sin θ = – sin 30° = sin (180° + 30°) or sin (360° – 30°) 

⇒ sin θ = sin 210° or sin 330° 

⇒ θ = 210°, 330°.

241.

The value of x in  \(\big ( 0, \frac{π}{2}\big)\)  satisfying the equation sin x cos x = \(\frac{1}{4}\) is(a) \(\frac{\pi}{6}\)(b) \(\frac{\pi}{8}\)(c) \(\frac{\pi}{12}\)(d) \(\frac{\pi}{4}\)

Answer»

Answer : (c) \(\frac{π}{12}\)

sin x cos x = \(\frac{1}{4}\) 

⇒ 2 sin x cos x = \(\frac{1}{2}\)  ⇒ sin 2x = \(\frac{1}{2}\) 

⇒ sin 2x = sin \(\frac{π}{6}\) 

⇒ 2x = \(\frac{π}{6}\) , x ∈ ( 0 , \(\frac{π}{2}\) ) 

⇒ x = \(\frac{π}{12}\) 

242.

What is solution of a trigonometric equation?

Answer»

The solution of a trigonometric equation is a value of the unknown angle that satisfies the equation. 

A trigonometric equation may have an unlimited number of solutions

For example, if sin x = 0, then x = 0, π, 2π, 3π, .... 

• A solution lying between 0° and 360° is called the principal solution

• Since the trigonometric functions are periodic, a solution generalized by means of periodicity is known as the general solution.

Every equation will have a principal solution as well as a general solution.

243.

what will be the solution of equation sin θ  = 0 ?

Answer»

Given 

 sin θ = 0 

∵ sin θ = sin 0 = sin π = sin 2π = sin (–2π) = .... = 0 

Therefore sin θ = 0 is satisfied by the following values of θ. 

∴ θ = 0, ± π, ± 2π, ± 3π, ± 4π, ..... 

⇒ The general solution of sin θ = 0 is θ = nπ, n∈I

244.

Sin230⁰ Cos245⁰ - 3 sin2 30⁰ + 2 cos2 90⁰

Answer»

sin230° cos245° - 3 sin2 30° + 2 cos2 90°

\((\frac{1}{2})^2 (\frac{1}{\sqrt2})^2 \) - 3 \((\frac{1}{2})^2\) + 2 (0)2

\(\frac{1}{4} \times \frac{1}{2}\) - 3 x \(\frac{1}{4}\) + 0

\(\frac{1}{8}\) - \(\frac{3}{4}\)

\(\frac{1-3}{8}\)

\(\frac{-2}{8}\)

\(\frac{-1}{4}\)

245.

What will be the solution for the equation cos θ  = 0 ?

Answer»

Given,

cos θ = 0

\(\theta = \pm\, \frac{\pi}{2}\) ,\(\pm\, \frac{3\pi}{2}\) , \(\pm\, \frac{5\pi}{2}\) , .... satisfy the equation cos θ = 0 as 

cos θ = cos (\( \pm\, \frac{\pi}{2}\) ) = cos (\(\pm\, \frac{3\pi}{2}\) ) = ... = 0

⇒ The general solution of cos θ = 0 is \(\theta = (2n+1) \frac{\pi}{2}\) , n ∈ I 

246.

What will be the solution for the equation tan θ  = 0

Answer»

Given,

tan θ = 0

This is satisfied by θ = 0, ± π, ± 2π, .... 

⇒ The general solution of tan θ = 0 is θ = nπ, n ∈ I

247.

Write the maximum and minimum values of sin θ.

Answer»

With the help of Minimum-Maximum Value Table we can find the Value of sin θ 

Therefore, 

Minimum Value of sin θ = - 1 

and Maximum Value of sin θ = 1

248.

Find the smallest positive value of x satisfying the equation logcos x sin x + logsin x cos x = 2

Answer»

Let logcos x sin x = p. Then, logsin x cos x = \(\frac{1}{p}\)

∴ log cos x sin x + log sin x cos x = 2 

⇒ p + \(\frac{1}{p}\) = 2 

⇒ p2 – 2p + 1 = 0 

⇒ (p – 1)2 = 0 

⇒ p = 1 

⇒ log cos x sin x = 1 

⇒ sin x = cos x 

The smallest positive value of x for which sin x = cos x is x = \(\frac{\pi}{4}\) .

249.

If sec 2A = cosec(A - 42°), where 2A is an acute angle, find the value of A.

Answer»

sec 2A = cosec(A - 42°)

⇒ cosec (90°- 2A) = cosec(A - 42°)

⇒  90°- 2A = A - 42°

⇒ 3A = 132°

⇒ A = \(\frac{132°}{3} = 44°\)

250.

What is the solution for the equation tan θ = tan α ?

Answer»

tan θ = tan α

⇒ \(\frac{sin\,\theta}{cos \,\theta}\) = \(\frac{sin\,\alpha}{cos \,\alpha}\) 

⇒ sin θ cos α - cos θ sin α = 0

⇒ sin (θ - α) = 0 

⇒ θ – α = nπ  

⇒ θ = nπ + α, n∈I.