This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 201. |
Evaluate: cos45° cos30° + sin45° sin30° |
|
Answer» On substituting the values of various T-ratios, we get: cos45° cos30° + sin45° sin30° \((\frac{1}{\sqrt2}\times\frac{\sqrt3}2+\frac{1}{\sqrt2}\times\frac{1}2)\) = \((\frac{\sqrt3}{2{\sqrt{2}}}+\frac{1}{2\sqrt{2}})\) = \((\frac{{\sqrt{3}}+1}{2\sqrt{2}})\) |
|
| 202. |
If tan x = \(\frac{4}{3}\), then the value of \(\sqrt{\frac{(1-sin\,x)(1+sin\,x)}{(1+cos\,x)(1-cos\,x)}}\) is(a) \(\frac{9}{16}\) (b) \(\frac34\)(c) \(\frac43\) (d) \(\frac{16}{9}\) |
|
Answer» (b) \(\frac34\) \(\sqrt{\frac{(1-sin\,x)(1+sin\,x)}{(1+cos\,x)(1-cos\,x)}}\) = \(\sqrt{\frac{1-sin^2\,x}{1-cos^2\,x}}\) (∵ (a – b) (a+b) = a2 – b2) = \(\sqrt{\frac{cos^2\,x}{sin^2\,x}}\) (∵ sin2x + cos2x = 1) = \(\frac{cos\,x}{sin\,x}\) = cot θ = \(\frac{1}{tan\,\theta} = \frac{1}{\frac{4}{3}}=\frac34.\) |
|
| 203. |
Evaluate: cos60° cos30°− sin60° sin30° |
|
Answer» On substituting the values of various T-ratios, we get: cos60° cos30°− sin60° sin30° = \((\frac{1}2\times\frac{\sqrt{3}}2-\frac{\sqrt{3}}2\times\frac{1}2)\) = \((\frac{\sqrt{3}}4-\frac{\sqrt{3}}4)\) = 0 |
|
| 204. |
Evaluate the following. sin 45° + cos 45° |
|
Answer» sin 45° + cos 45° = \(\frac{1}{\sqrt{2}}\) + \(\frac{1}{\sqrt{2}}\) = \(\frac{1+1}{\sqrt{2}}\) = \(\frac{2}{\sqrt{2}}\) = \(\frac{\sqrt{2}\times\sqrt{2}}{\sqrt{2}}\) = \(\sqrt{2}\) |
|
| 205. |
If a right △ABC , right-angled at B, if tan A =1 then verify that 2sin A . cos A = 1 |
|
Answer» We have, Tan A = 1 ⇒ sinA/cosA = 1 ⇒ sin A = cos A ⇒ sin A − cos A = 0 Squaring both sides, we get (sinA − cosA)2 = 0 ⇒ sin2A + cos2A − 2 sin A . cos A = 0 ⇒ 1 − 2 sin A . cos A = 0 ∴ 2 sin A . cosA = 1 |
|
| 206. |
If a cos θ – b sin θ = c, show that a sin θ + b cos θ = ±√(a2 + b2 + c2). |
|
Answer» a cos θ – b sin θ = c ⇒ (a cos θ – b sin θ)2 = c2 (i.e) a2 cos2 θ + b2 sin2 θ – 2ab sin θ cos θ = c2 (i.e) a2 (1 – sin2 θ) + b2 (1 – cos2 θ) – 2ab sin θ cos θ = c2 a2 – a2 sin2 θ + b2 – b2 cos2 θ – 2ab sin θ cos θ = c2 a2 + b2 – c2 = a2 sin2 θ + b2 cos2 θ + 2ab sin θ cos θ (i.e.) (a sin θ + b cos θ)2 = ±√(a2 + b2 + c2) a sin θ + b cos θ = ±√(a2 + b2 + c2) |
|
| 207. |
The value of `(8 sec^(4) theta- 8 tan^(4) theta)/( 4+8 tan^(2) theta )-(2 cos^(6)theta+2 sin^(6) theta )/(1-3 sin^(2) theta cos^(2) theta )` is ______ |
|
Answer» Correct Answer - A (i) Put `theta =0` and simplify. (ii) `sec^(4) theta-tan^(4)theta=sec^(2)theta+tan^(2)theta `. (iii) `a^(3)+b^(3)=(A+b)^(3)-3ab(a+b).` |
|
| 208. |
(tan 60° - tan 30°)/(1 + tan 60°. Tan 30°) = ?(A) 1/√2(B) 1/√3(C) 1/√4(D) 1/√5 |
|
Answer» The correct answer is (B) 1/√3. On substituting the values of various T-ratios, we get = (tan 60° - tan 30°)/(1 + tan 60°. Tan 30°) = (√3 – 1/√3)/(1 + √3 x 1/√3) = {(3 – 1)/√3}/(1 + 1) = 2/2 x √3 = 1/√3 |
|
| 209. |
If 2 sin 2 θ = √3 the value of θ is …….(A) 15°(B) 30°(C) 45°(D) 60° |
|
Answer» The correct answer is (B) 30° We have, 2 sin 2 θ = √3 sin 2 θ = √3/2 sin 2 θ = sin 60° 2 θ = 60° θ= 60°/2 θ = 30° |
|
| 210. |
If θ is an acute angle and sin θ = cos θ. The value of 2 tan2 θ + sin2 θ – 1 is(A) 1/2(B) 3/2(C) 5/2(D) 7/2 |
|
Answer» The correct answer is (B) 3/2 We have, sin θ = cos θ sin θ/ cos θ = cos θ/ cos θ [ Dividing both sides by cos θ] tan θ = 1 tan θ = tan 45° θ = 45° 2 tan2 θ + sin2 θ – 1 = 2 tan2 45° + sin245° - 1 = 2 (1)2 + (1/√2)2 – 1 = 2 + 1/2 – 1 = (4 + 1 – 2)/2 = 3/2 |
|
| 211. |
If A and B are acute angles such that sin A = cos B then (A + B) = ?(A) 45°(B) 60°(C) 90°(D) 180° |
|
Answer» The correct answer is (C) 90° sin A = cos B cos (90° - A) = cos B [sin A = cos (90° - A)] 90° - A = B 90° = A + B A + B = 90° |
|
| 212. |
If cos 9α = sinα and 9α < 90° , then the value of tan5α is (A) 1/√3 (B) √3 (C) 1 (D) 0 |
|
Answer» Correct answer is (C) 1 |
|
| 213. |
What is the common systems of measuring angles? |
|
Answer» The common systems of measuring angles are: (a) Sexagesimal System: Here, one complete revolution is divided into 360 equal parts, each called a degree, a degree is divided into sixty equal parts, each called a second. Thus, One complete revolution = 360° 1° = 60' (minutes) 1' = 60'' (seconds) (b) Circular System: The unit of measuring an angle in this system is radian. A radian is the measure of the central angle subtended by an arc equal in length to the radius of the circle. 1 radian is written as 1c. |
|
| 214. |
Without using trigonometric tables, prove that:(i) sin53° cos37° + cos53°sin37° = 1(ii) cos54°cos36° - sin54°sin36° = 0(iii) sec70°sin20° + cos20°cosec70° = 2 |
|
Answer» (i) LHS = sin53° cos37° + cos53°sin37° = sin(90° - 37°)cos37° + cos(90° - 37°) sin 37° = cos37°cos37° + sin 37° sin 37° = cos2 37° + sin2 37° = 1 = RHS (ii) LHS = cos54°cos36° - sin54°sin36° = cos (90° - 36°)cos36° - sin(90° - 36°) sin 36° = sin36°cos36° - cos 36° sin 36° = 0 = RHS (iii) LHS = sec70°sin20° + cos20°cosec70° = sec (90° - 20°)sin20° + cos20°cosec(90°- 20° = cosec20° . 1/cosec20° + 1/sec 20°. sec20° = 1 + 1 = 2 = RHS |
|
| 215. |
Find the value of x in each of the following:2 sin 3x = \(\sqrt3\) |
|
Answer» 2 sin 3x = \(\sqrt3\) ⇒ sin 3x = \(\frac{\sqrt3}2\) ⇒ sin 3x = sin 60° ⇒ 3x = 60° ⇒ x = 20° |
|
| 216. |
In triangle PQR, right-angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P. |
|
Answer» Solution |
|
| 217. |
(i) The value of tan A is always less than 1. (ii) sec A = 12/5 for some value of angle A. (iii) cos A is the abbreviation used for the cosecant of angle A. (iv) cot A is the product of cot and A. (v) sin θ = 4/3 for some angle θ . |
Answer»
|
|
| 218. |
Prove the following:2.sec2 θ – sec4 θ – 2.cosec2 θ + cosec4 θ = cot4 θ – tan4 θ |
|
Answer» LHS = 2.sec2 θ – sec4 θ – 2.cosec2 θ + cosec4 θ = 2 sec2 θ – (sec2 θ)2 – 2cosec2 θ + (cosec2 θ)2 = 2(1+ tan2 θ) – (1+ tan2 θ)2 – 2(1+ cot2 θ) + (1+ cot2 θ)2 = 2 + 2tan2 θ – (1 + 2tan2 θ + tan4 θ) – 2 – 2cot2 θ + 1 + 2cot2 θ + cot4 θ = 2 + 2.tan2 θ – 1 – 2 tan2 θ – tan4 θ – 2 – 2 cot2 θ + 1 + 2 cot2 θ + cot4 θ = cot4 θ – tan4 θ = R.H.S. |
|
| 219. |
Prove the following:(tan θ + 1/cos θ)2 + (tan θ - 1/ cos θ)2 = 2 (1+sin2θ/1-sin2θ) |
|
Answer» L.H.S. = (tan θ + 1/cos θ)2 + (tan θ - 1/cos θ)2 = (tanθ + secθ)2 + (tanθ – secθ)2 = tan2 θ + 2 tan θ sec θ + sec2 θ + tan2 θ – 2 tan θ sec θ +.sec2 θ = 2(tan2 θ + sec2 θ) |
|
| 220. |
If `cos(A-B)=(5)/(13) and sin(A+B)=(4)/(5)`, then find sin2B. |
| Answer» Correct Answer - `(-16)/(65)` | |
| 221. |
Prove the following: tan (π/4+θ) = 1+tanθ/1-tanθ |
|
Answer» L.H.S = tan(π/4+θ) = \(\frac{tan\frac{\pi}{4}+tan \theta}{1-tan\frac{\pi}{4}tan\theta}\) = \(\frac{1+tan\theta}{1-(1)tan\theta}\) =\(\frac{1+tan\theta}{1-tan\theta}\) =RHS |
|
| 222. |
Sin a/Cos a . Cot α =A) Tan αC) 1B) CotaD) -1 |
|
Answer» Correct option is: C) 1 \(\frac{Sin\, \alpha}{Cos\, \alpha} . Cot\, \alpha =\) \(\frac {sin \,\alpha}{cos \, \alpha}. \frac {cos \, \alpha}{sin \, \alpha} = 1\) ( \(\because\) cot \(\alpha\) = \(\frac {cos \, \alpha}{sin \, \alpha}\)) Correct option is: C) 1 |
|
| 223. |
If sin(A + B + C) = 1, then tan(A - B) = 1/√3 and sec(A + C) = 2, find A, B and C respectively when they are acute.(A) 60°, 0°, 30°(B) 30°, 60°, 90°(C) 60°, 30°, 0°(D) 0°,60°, 30° |
|
Answer» The correct option is: (C) 60°, 30°, 0° Explanation: We have, sin(A + B + C) = 1 => sin(A + B + C) = sin 90° => A + B + C = 90° ...(i) Also, tan(A - B) = 1/√3 = tan 30° => A - B = 30° ...(ii) and sec (A + C) = 2 = sec 60° => A + C = 60° ....(iii) From (ii) and (iii), we get B + C = 30° ...(iv) From (i) and (iv), we get, A = 60° . .. B = 30° [Using A = 60° in (ii)] and C = 0° [Using A = 60° in (iii)] |
|
| 224. |
Which of the following is the value of sin 90°? (A) √3/2(B) 0(C) 1/2(D) 1 |
|
Answer» (D) The answer is 1 |
|
| 225. |
If x = a sinθ and y = b cosθ,write the value of (b2x2 + a2y2). |
|
Answer» (b2x2 + a2y2) = b2 (a sin θ)2 + a2 (b cos θ)2 = b2a2 sin2 θ + a2b2 cos2 θ = a2b2 (sin2 θ + cos2 θ) = a2b2 (1) = a2b2 |
|
| 226. |
Prove the following identities :1 – 2 cos2θ + cos4θ = sin4θ |
|
Answer» Taking LHS = 1 – 2 cos2 θ + cos4 θ We know that, cos2 θ + sin2 θ = 1 = 1– 2 cos2 θ + (cos2 θ)2 = 1 – 2 cos2 θ + (1 – sin2 θ)2 = 1 – 2 cos2 θ +1 + sin4 θ – 2sin2θ = 2 – 2(cos2 θ + sin2θ) + sin4 θ = 2 – 2(1) + sin4 θ = sin4 θ = RHS Hence Proved |
|
| 227. |
Prove the following identities :1 – 2sin2θ + sin4θ = cos4θ |
|
Answer» Taking LHS = 1 – 2 sin2 θ + sin4 θ We know that, cos2 θ + sin2 θ = 1 = 1– 2 sin2 θ + (sin2 θ)2 = 1 – 2 sin2 θ + (1 – cos2 θ)2 = 1 – 2 sin2 θ +1 + cos4 θ – 2cos2θ = 2 – 2(cos2 θ + sin2θ) + cos4 θ = 2 – 2(1) + cos4 θ = cos4 θ = RHS Hence Proved |
|
| 228. |
cos4θ – sin4θ =A) 1 – 2sin2θB) 2sin2θC) secθD) cosecθ |
|
Answer» Correct option is: A) \(1-2 \,sin^2\theta\) \(cos^4 \theta – sin^4 \theta =\) \((cos^2\theta)^2 - (sin^2\theta)^2\) = \((cos^2\theta - sin^2\theta) (cos^2\theta + sin^2\theta)\) (\(\because\) \(a^2-b^2 = (1-b) (a+b))\) = \(cos^2\theta - sin^2\theta \) (\(\because\) \(\cos^2\theta + sin^2\theta =1\)) = \((1-sin^2\theta) - sin^2\theta \) ( \(\because\) \(cos^2\theta = 1-sin^2\theta\) ) = \(1-2 \,sin^2\theta\) Correct option is: A) 1 – 2sin2θ |
|
| 229. |
Prove that cos4θ – sin4θ = 2cos2θ – 1 |
|
Answer» L.H.S. cos4θ – sin4θ = (cos2θ)2 – (sin2θ)2 = (cos2θ + sin2θ) (cos2θ – sin2θ) = 1 . (cos2θ – (1 – cos2θ) = cos2θ – 1 + cos2θ = 2cos2θ – 1 = R.H.S. |
|
| 230. |
The most general value of θ satisfying the equation sin θ = sin α and cos θ = cos α is (a) 2nπ + α(b) 2nπ – α (c) nπ + α (d) nπ – α |
|
Answer» Answer : (c) nπ + α Given, sin θ = sin α ...(i) cos θ = cos α ...(ii) ∴ Dividing eqn (i) by eqn (ii), we have tan θ = tan α ⇒ θ = nπ + α. |
|
| 231. |
Find the general solution of tan 2θ tan θ = 1. |
|
Answer» Given, tan 2θ tanθ = 1 ⇒ \(\frac{ 2\,tan\theta}{1-tan^2\theta}\) . tanq =1 ⇒ \(\frac{ 2\,tan\theta}{1-tan^2\theta}\) =1 ⇒2 tan2 θ= 1− tan2 θ ⇒ 3 tan2 θ = 1 ⇒ tan2 θ = \(\frac{1}{3}\) ⇒ tan2 θ = ( \(\frac{1}{\sqrt{3}}\) )2 = tan2 \(\frac{π}{6}\) ⇒ θ = nπ ± \(\frac{π}{6}\) |
|
| 232. |
Find the general values of θ if (i) 2 sin θ – 1 = 0 (ii) cos θ = \(-\frac{1}{2}\)(iii) 4 sin2θ = 1 (iv) tan 2x – \(\sqrt{3}\) = 0 (v) 2 cot2 θ = cosec2 θ |
|
Answer» (i) 2 sin θ – 1 = 0 ⇒sin θ = \(\frac{1}{2}\) = sin \(\frac{\pi}{6}\) ⇒ θ = nπ + (–1)n \(\frac{\pi}{6}\) , n∈I (ii) cos θ = − \(\frac{1}{2}\) = cos (180° – 60°) = cos ( π - \(\frac{\pi}{3}\) ) = cos \(\frac{2\pi}{3}\) ∴ θ = 2nπ \(\pm\) \(\frac{2\pi}{3}\), n∈I (iii) 4 sin2 θ = 1 ⇒ \(\frac{4(1-cos\,2\theta)}{2}\) = 1 ⇒ 2(1 - cos 2θ) =1 ⇒ 1-cos 2θ = \(\frac{1}{2}\) ⇒ cos 2θ = \(\frac{1}{2}\) = cos \(\frac{\pi}{3}\) ∴ 2θ = 2nπ ± \(\frac{\pi}{3}\) ⇒ θ = nπ ± \(\frac{\pi}{6}\) (iv) tan 2x – \(\sqrt{3}\) = 0 ⇒ tan 2x = \(\sqrt{3}\) = tan \(\frac{\pi}{3}\) ⇒ 2x = nπ + \(\frac{\pi}{3}\) ⇒ x = \(\frac{n\pi}{2}\) + \(\frac{\pi}{6}\) , n ∈ I (v) 2 cot2 θ = cosec2 θ ⇒ 2 cot2 θ = 1 + cot2 θ ⇒ cot2 θ = 1 ⇒ cot θ = ± 1 = cot (± \(\frac{\pi}{4}\)) ⇒ θ = nπ ± \(\frac{\pi}{4}\) , n ∈ I |
|
| 233. |
If the equation tan θ + tan 2θ + tan θ . tan 2θ = 1, θ =(a) \(\frac{nπ}{6}\) +\(\frac{π}{6}\)(b) \(\frac{nπ}{2}\) + 6(c) \(\frac{nπ}{3}\)+ \(\frac{π}{12}\)(d) \(\frac{nπ}{2}\)+\(\frac{π}{12}\) |
|
Answer» Answer : (c) \(\frac{n\pi}{3}\)+ \(\frac{\pi}{12}\) tan θ + tan 2θ = 1 – tan θ . tan 2θ ⇒ \(\frac{tan\,θ +tan\,2θ}{1- tan\,θ\,tan\,2θ}\) =1 ⇒ tan (θ + 2θ) = 1 \(\big( \because tan\,(A+B) = \frac{tan\,A+tan\,B}{1-tan\,A\,tan\,B}\big)\) ⇒ tan 3θ = tan \(\frac{\pi}{4}\) ⇒ 3θ = nπ + \(\frac{\pi}{4}\) ⇒ θ = \(\frac{n\pi}{3}\)+ \(\frac{\pi}{12}\). |
|
| 234. |
The root of equation 1 – cos θ = sin θ.sin \(\frac{θ}{2}\) is (a) k π, k∈I (b) 2kπ, k∈I (c) k. \(\frac{π}{2}\), k ∈ I(d) None of these |
|
Answer» Answer : (b) 2kπ, k∈I 1 – cos θ = sin θ . sin θ/2 ⇒ 2 sin2 θ/2 = 2 sin θ/2 . cos θ/2 . sin θ/2 ⇒ 2 sin2 θ/2 (1 – cos θ/2) = 0 ⇒ 2 sin2 θ/2 = 0 or 1 – cos θ/2 = 0 ⇒ sin θ/2 = 0 or 2 sin2 θ/4 = 0 (Using, 1 – cos 2θ = 2 sin2 θ) ⇒ \(\frac{θ}{2}\) = kπ or \(\frac{θ}{2}\) = kπ , where k∈I. ⇒ θ = 2kπ or θ = 4kπ, k∈I. ⇒ θ = 2kπ, k∈I |
|
| 235. |
The solution of the equation 4 cos2 x + 6 sin2 x = 5 are (a) x = nπ ± \(\frac{π}{4}\) (b) x = nπ ± \(\frac{π}{3}\)(c) x = nπ ± \(\frac{π}{2}\) (d) x = nπ ± \(\frac{2π}{3}\) |
|
Answer» Answer : (a) \(x = nπ ± \frac{π}{4}\) 4 cos2 x + 6 sin2 x = 5 ⇒ 4 (cos2 x + sin2 x) + 2 sin2 x = 5 ⇒ 2 sin2 x = 5 – 4 = 1 ⇒ sin2 x = \(\frac{1}{2}\) ⇒ sin x = ± \(\frac{1}{√2}\) ⇒ \(x = nπ ± \frac{π}{4}\) |
|
| 236. |
The general value of θ obtained from the equation cos 2θ = sin α is (a) θ = 2nπ ± \(\big(\) \(\frac{π}{2}\) - α \(\big)\)(b) θ = \(\frac{nπ +(-1)^n\alpha}{2}\) (c) θ = nπ ± \(\big(\) \(\frac{π}{4}\) - \(\frac{α}{2}\) \(\big)\)(d) 2θ = \(\frac{π}{2}\) – α |
|
Answer» Answer : (c) = θ = nπ ± \(\big( \frac{\pi}{4} -\frac{\alpha}{2}\big)\) cos 2θ = sin α ⇒ cos 2θ = cos \(\big( \frac{\pi}{2} -\alpha\big)\) ⇒ 2θ = 2nπ ± \(\big( \frac{\pi}{2} -\alpha\big)\) (∵ cos θ = cos α ⇒ θ = 2nπ ± α) ⇒ θ = nπ ± \(\big( \frac{\pi}{4} -\frac{\alpha}{2}\big)\) |
|
| 237. |
Sin θ = 1/2 then cot θ =A) 3 B) 7 C) √3 D) 2√3 |
|
Answer» Correct option is: C) √3 sin \(\theta\) = \(\frac 12\) = sin \(30^\circ\) = \(\theta\) = \(30^\circ\) \(\therefore\) cot \(\theta\) = cot \(30^\circ\) = \(\sqrt3\) Correct option is: C) √3 |
|
| 238. |
If 3 cos x ≠ 2 sin x, then find the general solution of sin2x – cos 2x = 2 – sin 2x. |
|
Answer» Given: sin2x – cos 2x = 2 – sin 2x ⇒ 1 – cos2x – (2cos2x – 1) = 2 – 2 sin x cos x ⇒ – 3 cos2x + 2 sin x cos x = 0 ⇒ cos x (2 sin x – 3 cos x) = 0 ⇒ cos x = 0 (∵ 2 sin x ≠ 3 cos x) ⇒ x = 2nπ ± \(\frac{\pi}{2}\) ⇒ x = (4n ± 1) \(\frac{\pi}{2}\) |
|
| 239. |
x ∈ R: cos 2x + 2 cos2 x = 2 is equal to(a) 2nπ + \(\frac{π}{3}\) , n ∈ Z(b) nπ ± \(\frac{π}{6}\), n ∈ Z(c) nπ + \(\frac{π}{3}\) , n ∈ Z(d) 2nπ - \(\frac{π}{3}\), n ∈ Z |
|
Answer» Answer : (b) nπ ± \(\frac{π}{6}\), n ∈ Z cos 2x + 2 cos2 x = 2 ⇒ 2 cos2 x – 1 + 2 cos2 x = 2 ⇒ 4 cos2 x = 3 ⇒ cos x = ± \(\frac{\sqrt{3}}{2}\) ⇒ x = nπ ± \(\frac{π}{6}\), n∈Z |
|
| 240. |
The value of θ (0 < θ < 2 π) satisfying cosec θ + 2 = 0 are(a) 210°, 330° (b) 210°, 240° (c) 220°, 330° (d) 240°, 300° |
|
Answer» Answer: (a) 210°, 330° Given, cosec θ + 2 = 0 ⇒ cosec θ = –2 ⇒ sin θ = − \(\frac{1}{2}\) = – sin 30° ⇒ sin θ = – sin 30° = sin (180° + 30°) or sin (360° – 30°) ⇒ sin θ = sin 210° or sin 330° ⇒ θ = 210°, 330°. |
|
| 241. |
The value of x in \(\big ( 0, \frac{π}{2}\big)\) satisfying the equation sin x cos x = \(\frac{1}{4}\) is(a) \(\frac{\pi}{6}\)(b) \(\frac{\pi}{8}\)(c) \(\frac{\pi}{12}\)(d) \(\frac{\pi}{4}\) |
|
Answer» Answer : (c) \(\frac{π}{12}\) sin x cos x = \(\frac{1}{4}\) ⇒ 2 sin x cos x = \(\frac{1}{2}\) ⇒ sin 2x = \(\frac{1}{2}\) ⇒ sin 2x = sin \(\frac{π}{6}\) ⇒ 2x = \(\frac{π}{6}\) , x ∈ ( 0 , \(\frac{π}{2}\) ) ⇒ x = \(\frac{π}{12}\) |
|
| 242. |
What is solution of a trigonometric equation? |
|
Answer» The solution of a trigonometric equation is a value of the unknown angle that satisfies the equation. A trigonometric equation may have an unlimited number of solutions. For example, if sin x = 0, then x = 0, π, 2π, 3π, .... • A solution lying between 0° and 360° is called the principal solution. • Since the trigonometric functions are periodic, a solution generalized by means of periodicity is known as the general solution. Every equation will have a principal solution as well as a general solution. |
|
| 243. |
what will be the solution of equation sin θ = 0 ? |
|
Answer» Given sin θ = 0 ∵ sin θ = sin 0 = sin π = sin 2π = sin (–2π) = .... = 0 Therefore sin θ = 0 is satisfied by the following values of θ. ∴ θ = 0, ± π, ± 2π, ± 3π, ± 4π, ..... ⇒ The general solution of sin θ = 0 is θ = nπ, n∈I |
|
| 244. |
Sin230⁰ Cos245⁰ - 3 sin2 30⁰ + 2 cos2 90⁰ |
|
Answer» sin230° cos245° - 3 sin2 30° + 2 cos2 90° = \((\frac{1}{2})^2 (\frac{1}{\sqrt2})^2 \) - 3 \((\frac{1}{2})^2\) + 2 (0)2 = \(\frac{1}{4} \times \frac{1}{2}\) - 3 x \(\frac{1}{4}\) + 0 = \(\frac{1}{8}\) - \(\frac{3}{4}\) = \(\frac{1-3}{8}\) = \(\frac{-2}{8}\) = \(\frac{-1}{4}\) |
|
| 245. |
What will be the solution for the equation cos θ = 0 ? |
|
Answer» Given, cos θ = 0 \(\theta = \pm\, \frac{\pi}{2}\) ,\(\pm\, \frac{3\pi}{2}\) , \(\pm\, \frac{5\pi}{2}\) , .... satisfy the equation cos θ = 0 as cos θ = cos (\( \pm\, \frac{\pi}{2}\) ) = cos (\(\pm\, \frac{3\pi}{2}\) ) = ... = 0 ⇒ The general solution of cos θ = 0 is \(\theta = (2n+1) \frac{\pi}{2}\) , n ∈ I |
|
| 246. |
What will be the solution for the equation tan θ = 0 |
|
Answer» Given, tan θ = 0 This is satisfied by θ = 0, ± π, ± 2π, .... ⇒ The general solution of tan θ = 0 is θ = nπ, n ∈ I |
|
| 247. |
Write the maximum and minimum values of sin θ. |
|
Answer» With the help of Minimum-Maximum Value Table we can find the Value of sin θ Therefore, Minimum Value of sin θ = - 1 and Maximum Value of sin θ = 1 |
|
| 248. |
Find the smallest positive value of x satisfying the equation logcos x sin x + logsin x cos x = 2 |
|
Answer» Let logcos x sin x = p. Then, logsin x cos x = \(\frac{1}{p}\). ∴ log cos x sin x + log sin x cos x = 2 ⇒ p + \(\frac{1}{p}\) = 2 ⇒ p2 – 2p + 1 = 0 ⇒ (p – 1)2 = 0 ⇒ p = 1 ⇒ log cos x sin x = 1 ⇒ sin x = cos x The smallest positive value of x for which sin x = cos x is x = \(\frac{\pi}{4}\) . |
|
| 249. |
If sec 2A = cosec(A - 42°), where 2A is an acute angle, find the value of A. |
|
Answer» sec 2A = cosec(A - 42°) ⇒ cosec (90°- 2A) = cosec(A - 42°) ⇒ 90°- 2A = A - 42° ⇒ 3A = 132° ⇒ A = \(\frac{132°}{3} = 44°\) |
|
| 250. |
What is the solution for the equation tan θ = tan α ? |
|
Answer» tan θ = tan α ⇒ \(\frac{sin\,\theta}{cos \,\theta}\) = \(\frac{sin\,\alpha}{cos \,\alpha}\) ⇒ sin θ cos α - cos θ sin α = 0 ⇒ sin (θ - α) = 0 ⇒ θ – α = nπ ⇒ θ = nπ + α, n∈I. |
|