Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

151.

Write ‘True’ or ‘False’ and justify your answer.The value of the expression (sin 80° – cos 80°) is negative.

Answer»

False

Justification:

We know that,

sin θ increases when 0° ≤ θ ≤ 90°

cos θ decreases when 0° ≤ θ ≤ 90°

And (sin 80°-cos 80°) = (increasing value-decreasing value)

= a positive value.

Therefore, (sin 80°-cos 80°) > 0.

152.

sin 47° cos 43°+ cos 47° sin 43° = ? (a) sin 4°(b) cos 4°(c) 1 (d) 0

Answer»

Correct answer = (c) 1

We have

(sin 43° cos 47° + cos 43° sin 47°)

= sin 43° cos(90° − 43°) + cos 43° sin(90° − 43°) 

= sin 43° sin 43° + cos 43° cos 43° [∵ cos(90° − θ) = sin θ and sin(90° − θ) = cos θ] 

= sin2 43° + cos2 43°

= 1

153.

Write ‘True’ or ‘False’ and justify your answer.tanθ increases faster than sinθ as θ increases.

Answer»

True

We know that sinθ increases as θ increases but cosθ decreases as θ increases. 

We have tan θ = sin θ/cos θ 

Now as θ increases, sinθ increases but cosθ decreases. Therefore, in case of tanθ, the numerator increases and the denominator decreases. But in case of sinθ which can be seen as sin θ/1, only the numerator increases but the denominator remains fixed at 1. 

Hence tanθ increases faster than sinθ as θ increases.

154.

Write ‘True’ or ‘False’ and justify your answer.The value of the expression (cos223° – sin267°) is positive.

Answer»

False

Justification:

Since, (a2-b2) = (a+b)(a-b)

cos2 23° – sin2 67° =(cos 23°+sin 67°)(cos 23°-sin 67°)

= [cos 23°+sin(90°-23°)] [cos 23°-sin(90°-23°)]

= (cos 23°+cos 23°)(cos 23°-cos 23°) (∵sin(90°-θ) = cos θ)

= (cos 23°+cos 23°).0

= 0, which is neither positive nor negative

155.

Given, 3 sin θ + 4 cos θ = 5, then what is 3 cos θ – 4 sin θ equal to?

Answer»

3 sin θ + 4 cos θ = 5 

⇒ (3 sin θ + 4 cos θ)2 = 25 ⇒ 9 sin2 θ + 16 cos2 θ + 24 sin θ cos θ = 25 

⇒ 9(1 – cos2 θ) + 16 (1 – sin2 θ) + 24 sin θ cos θ = 25     ( sin2 θ + cos2 θ = 1) 

⇒ 9 – 9 cos2 θ + 16 – 16 sin2 θ + 24 sin θ cos θ = 25 

⇒ 9 cos2 θ + 16 sin2 θ – 24 sin θ cos θ = 0 

⇒ (3 cos θ – 4 sin θ)2 = 0 ⇒ 3 cos θ – 4 sin θ = 0.

156.

Fill in the blanks. i. sin 20° = cos ....° ii. tan 30° x tan.....° = 1iii. cos 40° = sin .......°

Answer»

i. sin 20° = cos (90° – 20°) …..[∵ sin θ = cos (90 – θ)] 

= cos 70° 

ii. tan θ x tan (90 – θ) = 1 

Substituting θ = 30°,

 tan 30° x tan (90 – 30)° = 1 

∴ tan 30° x tan 60° = 1 

iii. cos 40° = sin (90° – 40°) …[∵ COS θ = sin (90 – θ)] 

= sin 50°

157.

Measuring height of a tree using trigonometric ratios.This experiment can be conducted on a clear sunny day. Look at the figure given above. Height of the tree is QR, height of the stick is BC. Thrust a stick in the ground as shown in the figure. Measure its height and length of its shadow. Also measure the length of the shadow of the tree. Using these values, how will you determine the height of the tree?

Answer»

Rays of sunlight are parallel. 

So, ∆PQR and ∆ABC are equiangular i.e., similar triangles.

Sides of similar triangles are proportional. 

\(\frac{OR}{BC}\) = \(\frac{PR}{AC}\)

∴ Height of the tree (QR) = \(\frac{BC}{AC}\) x PR 

Substituting the values of PR, BC and AC in the above equation, we can get length of QR i.e., the height of the tree.

158.

It is convenient to do the above experiment between 11:30 am and 1:30 pm instead of doing it in the morning at 8’O clock. Can you tell why?

Answer»

At 8’O clock in the morning, the sunlight is not very bright. At the same time, the sun is on the horizon and the shadow would by very long. It would be extremely difficult to measure shadow in that case. Between 11:30 am and 1:30 pm, the sun is overhead and it would be easier to measure the length of shadow.

159.

In the given figure, ∠R is the right angle of ∆PQR. Write the following ratios.i. sin P ii. cos Q iii. tan P iv. tan Q

Answer»

i. sin P = \(\cfrac{Opposite \,of ∠ P}{Hypotenuse}\) = \(\frac{QR}{PQ}\)

ii .cos Q = \(\cfrac{Adjacent\, side \,of ∠ Q}{Hypotenuse}\) = \(\frac{QR}{PQ}\)

iii. tan P = \(\cfrac{Opposite \,side\,of ∠ P}{Adjacent\, side \, of\,∠P}\) = \(\frac{QR}{PR}\)

 iv. tan Q = \(\cfrac{Opposite \,side\,of ∠ Q}{Adjacent\, side \, of\,∠Q}\) = \(\frac{PR}{QR}\)

160.

In the right angled ∆XYZ, ∠XYZ = 90° and a, b, c are the lengths of the sides as shown in the figure. Write the following ratios.i. sin x ii. tan z iii. cos x iv. tan x.

Answer»

 i. sin X = \(\cfrac{Opposite \,side \,of ∠ X}{Hypotenuse}\) = \(\frac{YZ}{XZ}\) = \(\frac{a}{c}\)

 ii. tan Z = \(\cfrac{Opposite \,side \,of ∠ Z}{Adjaent \,side \,of \, ∠ Z}\) = \(\frac{XY}{YZ}\) = \(\frac{b}{a}\)

  iii. cos X = \(\cfrac{Adjacent \,side \,of ∠ X}{Hypotenuse}\) = \(\frac{XY}{XZ}\) = \(\frac{b}{c}\) 

 ii. tan X = \(\cfrac{Opposite \,side \,of ∠ X}{Adjaent \,side \,of \, ∠ X}\) = \(\frac{XZ}{XY}\) = \(\frac{a}{b}\)

161.

In right angled ∆LMN, ∠LMN = 90°, ∠L = 50° and ∠N = 40°. Write the following ratios.i. sin 50° ii. cos 50°aiii. tan 40°iv. cos 40°

Answer»

 i. sin 50° = \(\cfrac{Opposite \,side \,of \,50°}{Hypotenuse}\) = \(\frac{MN}{LN}\) 

ii.cos 50° = \(\cfrac{Adjacent \,side \,of \,50°}{Hypotenuse}\) = \(\frac{LM}{LN}\) 

iii. tan 40° = \(\cfrac{Opposite\,side \,of \,40°}{Adjacent\,side\, of \,40°}\) = \(\frac{LM}{MN}\) 

iv. cos 40° = \(\cfrac{Adjacent \,side \,of \,40°}{Hypotenuse}\) = \(\frac{MN}{LN}\) 

162.

Show that sin(50° + θ) – cos (40° – θ) = 0.

Answer»

LHS = sin (50° + θ) – cos (40° - θ)

We know that,

Sin A = cos (90° - A)

Here, A = 50° + θ

⇒ cos {90° -( 50° + θ)} – cos (40° - θ)

⇒ cos (40° - θ) – cos (40° - θ)

= 0 = RHS

Hence Proved

163.

Proove: `(sin^(2)theta)/(cos theta)+cos theta=sec theta`

Answer» Proof:
LHS`=(sin^(2)theta)/(cos theta)+cos theta`
`=(sin^(2) theta+cos^(2)theta)/(cos theta)`
`=1/(cos theta)` ………. `(sin^(2) theta+cos^(2) theta=1)`
`=sec theta` ……….`[1/(cos theta)=sec theta]`
`=` RHS `:.` LHS `=` RHS
`:.(sin^(2)theta)/(cos theta)+cos theta=sec theta`.
164.

If cos2B = \(\frac{cos\,(A+B)}{cos\,(A-C)}\), then show that tan A, tan B and tan C are in G.P.

Answer»

 cos2B = \(\frac{cos\,(A+B)}{cos\,(A-C)}\)

⇒ \(\frac{1-tan^2\,B}{1+tan^2\,B}\) = \(\frac{cos\,A\,cos\,C-sin\,A\,sin\,C}{cos\,A\,cos\,C\,sin\,A\,sin\,C}\)

⇒ \(\frac{1-tan^2\,B}{1+tan^2\,B}\) = \(\frac{1-tan\,A\,tan\,C}{1+tan\,A\,tan\,C}\)             (On dividing the numerator and denominator of RHS by cos A cos C)

⇒ 1 + tan A tan C – tan2 B – tan A tan2 B tan C = 1 + tan2 B – tan A tan C – tan A tan2 B tan C 

⇒ 2 tan A tan C = 2 tan2 B ⇒ tan A . tan C = tan2 B ⇒ tan A, tan B, tan C are in G.P

165.

`(sin^(4)theta-cos^(4)theta)/(sin^(2)-cos^(2)theta)` = ______________.A. -1B. 2C. 0D. 1

Answer» Correct Answer - D
`a^(4)-b^(4)=(a^(2)-b^(2))(a^(2)+b^(2))`.
166.

A wheel makes 20 revolutions per hour. The radians turns through 25 minutes is __________.A. `(50pi^(c))/(7)`B. `(250pi^(c))/(3)`C. `(150pi^(c))/(7)`D. `(50pi^(c))/(3)`

Answer» Correct Answer - D
Find the angle covered in one hour.
167.

Eliminate `theta` from the following equations: `x= a sintheta, y=b costheta and z=a sin^(2) theta+b cos^(2)theta`.

Answer» Correct Answer - `bx^(2)+ay^(2)=abz`
168.

`sin^(2)20+sin^(2)70` is equal to _________.A. 1B. -1C. 0D. 2

Answer» Correct Answer - A
`sintheta=cos(90-theta)`.
169.

`sqrt(-4+sqrt(8+16cosec^(4)alpha+ sin^(4)alpha))` = ___________.A. `cosecalpha-sinalpha`B. `2cosecalpha+sinalpha`C. `2cosecalpha-sinalpha`D. `cosecalpha-sinalpha`

Answer» Correct Answer - C
Express the square root function as `(a+b)^(2)` and remove the first square root. Again express the obtained function as `(a-b)^(2)` and then simplify.
170.

Find sin θ such that 3cos θ + 4sin θ = 4.

Answer»

3cos θ + 4sin θ = 4 

∴ 3cos θ = 4(1 – sin θ) 

Squaring both the sides, we get . 

9cos2 θ = 16(1 – sin θ)2 

∴ 9(1 – sin2 θ) = 16(1 + sin2 θ – 2sin θ) 

∴ 9 – 9sin2 θ = 16 + 16sin2 θ – 32sin θ 

∴ 25sin2 θ – 32sin θ + 7 = 0 

∴ 25sin2 θ – 25sin θ – 7sin θ + 7 = 0 

25sin θ (sin θ – 1) – 7 (sin θ – 1) = 0 

∴ (sin θ – 1) (25sin θ – 7) = 0 

∴ sin θ – 1 = 0 or 25 sin θ – 7 = 0 

∴ sin θ = 1 or sin θ = 7/25

Since, -1 ≤ sin θ ≤ 1 

∴ sin θ = 1 or 7/25

171.

The value of 4 cot2 45° – sec260º + sin2 60° + cos2 90° is(a) \(\frac12\)(b) \(\frac34\) (c) 1 (d) \(\frac{11}{16}\)

Answer»

(b) \(\frac34\)

4 cot2 45° – sec2 60° + sin2 60° + cos2 90° 

= 4 (cot 45°)2 – (sec 60°)2 + (sin 60°)2 + (cos 90°)2

= 4 × 12 – (2)2\(\bigg(\frac{\sqrt3}{2}\bigg)\) + (0)2

= 4 - 4 + \(\frac34\) + 0 = \(\frac34\).

172.

\(\frac{1+Sin\theta}{\sqrt{1-Sin^2\theta}}\) =A) Sec θ + Tan θ B) Sec θ – Tan θC) Sec2 θ + Tan2 θD) Sec2 θ – Tan2 θ

Answer»

Correct option is: A) Sec θ + Tan θ

\(\frac{1+Sin \theta}{\sqrt{1-Sin^2 \theta}} =\) \(\frac{1+Sin \theta}{ \sqrt{cos^2 \theta}} = \frac {1+sin\, \theta}{cos\, \theta}\) 

\(\frac 1{cos\, \theta} + \frac {sin \, \theta }{cos \ \theta}\)

= sec \(\theta\) + tan \(\theta\)

Correct option is: A) Sec θ + Tan θ

173.

Prove:(√3+1) (3 – cot 30°) = tan3 60° – 2 sin 60°

Answer»

L.H.S: (√3 + 1) (3 – cot 30°)

= (√3 + 1) (3 – √3) [∵cos 30° = √3]

= (√3 + 1) √3 (√3 – 1) [∵(3 – √3) = √3 (√3 – 1)]

= ((√3)2– 1) √3 [∵ (√3+1)(√3-1) = ((√3)2 – 1)]

= (3-1) √3

= 2√3

Similarly solving R.H.S: tan3 60° – 2 sin 60°

Since, tan 60o = √3 and sin 60o = √3/2,

We get,

(√3)3 – 2.(√3/2) = 3√3 – √3

= 2√3

Therefore, L.H.S = R.H.S

Hence, proved.

174.

If (sin α + cosec α)2 + (cos α + sec α)2 = k + tan2 α + cot2 α, then the value of k is equal to(1) 9(2) 7(3) 5(4) 3

Answer»

Answer is (2) 7

(sin α + cosec α)2 + (cos α + sec α)2 = k + tan2 α + cot2 α

sin2 α + cosec2 α + 2 sin α cosec α + cos2 α + secα + 2 cos α sec α = k + tan2 α + cot2 α

sin2 α + cos2 α + cosec2 α + sec2 α + 2 sin α x + \(\frac{1}{sin\alpha}\) 2 cos α x \(\frac{1}{cos\alpha}\) = k + tan2 α + cot2 α

1 + 1 + cot2 α + 1 + tan2 α + 2 + 2 = k + tan2 α + cot2 α

7 + cot2 α + tan2 α = k + tan2 α + cot2 α

∴ k = 7

175.

a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to …(1) a2 – b2(2) b2 – a2(3) a2 + b2(4) b – a

Answer»

(2) b2 – a2

p2 – q2 = (p + q) (p – q)

= (a cot θ + b cosec θ + b cot θ + a cosec θ) (a cot θ + b cosec θ – b cot θ – a cosec θ)

= [cot θ (a + b) + cosec θ (a + b)] [cot θ (a – b) + cosec θ (b – a)]

= (a + b) [cot θ + cosec θ] (a – b) [cosec θ (a – b)]

= (a + b) [cot θ + cosec θ] (a – b) [cot θ – cosec θ]

= (a + b) (a – b) (cot2 θ – cosec2 θ)

= (a2 – b2) (-1) = – (a2 – b2)

p2 – q2 = b2 – a2

176.

What is \(\frac{sin^6\,θ-cos^6\,θ}{sin^2\,θ-cos^2\,θ}\) equal to?(a) sin4θ – cos4θ (b) 1 – sin2θ cos2θ (c) 1 + sin2θ cos2θ (d) 1 – 3 sin2θ cos2θ

Answer»

(b) 1 – sin2 θ cos2 θ     

\(\frac{sin^6\,θ-cos^6\,θ}{sin^2\,θ-cos^2\,θ}\) = \(\frac{(sin^2\,\theta)^3-(cos^2\,\theta)^3}{sin^2\,\theta-cos^2\,\theta}\)

\(\frac{(sin^\,\theta-cos^2\,\theta)(sin^4\,\theta+cos^4\,\theta+sin^2\,\theta\,\cos^2\,\theta)}{(sin^2\,\theta-cos^2\,\theta)}\)         (Using a3 – b3 = (a – b) (a2 + b2 + ab)) 

= sin4 θ + cos4 θ + 2 sin2 θ cos2 θ – sin2 θ cos2 θ 

= (sin2 θ + cos2 θ)2 – sin2 θ cos2 θ 

= 1 – sin2 θ cos2 θ                       ( sin2 θ + cos2 θ = 1)

177.

If \(\frac{cos\,x}{1+cosec\,x}+\frac{cos\,x}{cosec\,x-1}=2\) which one of the following is one of the values of x ?(a) \(\frac{π}{2}\) (b) \(\frac{π}{3}\)(c) \(\frac{π}{4}\) (d) \(\frac{π}{6}\)

Answer»

(c) \(\fracπ4\)

\(\frac{cos\,x}{1+cosec\,x}+\frac{cos\,x}{cosec\,x-1}=2\)

⇒ \(\frac{cos\,x(cosec\,x-1)+cos\,x(1+cosec\,x)}{cosec^2\,x-1}=2\)

⇒ \(\frac{2\,cos\,x\,cosec\,x}{cot^2\,x}=2\)

⇒ \(\frac{cos\,x}{sin\,x}\times\frac{sin^2\,x}{cos^2\,x}=1\)

⇒ tan \(x\) = 1 ⇒ tan\(x\) = tan \(\fracπ4\) ⇒ \(x\) = \(\fracπ4\).

178.

Evaluate: cos 2 (θ + ϕ) + 4 cos (θ + ϕ) sin q sin f + 2 sin2 ϕ(a) sin 2θ (b) cos 2θ (c) sin 3θ (d) cos 3θ

Answer»

(b) cos 2θ

cos 2 (θ + ϕ) + 4 cos (θ + ϕ) sin θ sin ϕ + 2sin2ϕ 

= {cos 2θ cos 2ϕ – sin 2θ sin 2ϕ} + 4 {(cos θ cos ϕ – sin θ sin ϕ) sin θ sin ϕ} + 2 sin2ϕ 

= {(1 – 2 sin2 θ) (1 – 2 sin2ϕ) – 2 sin θ cos θ . 2 sin ϕ cos ϕ} + [4 cos θ cos ϕ sin θ sin ϕ – 4 sin2θ sin2ϕ] + 2 sin2ϕ 

= 1 – 2 sin2 θ – 2 sin2ϕ + 4 sin2θ sin2 ϕ – 4 sin θ sin ϕ cos θ cos ϕ + 4 cos θ cos ϕ sin θ sin φ – 4 sin2θ sin2ϕ + 2 sin2ϕ 

= 1 – 2 sin2θ = cos 2θ.

179.

If x = r sinθ cos ϕ, y = r sinθ sin ϕ and z = r cos θ, then .....(A) x2 + y2 + z2 = r2(B) x2 + y2 - z2 = r2(C) x2 - y2 + z2 = r2(D) x2 + y2 - z2 = r2

Answer»

The correct option is: (A) x2 + y+ z2 = r2

Explanation:

x = r sinθ cos ϕ       ...(i)

y = r sinθ sin ϕ        ....(ii)

z = r cos θ               ....(iii)

Squaring and adding (i) and (ii), we get

 x2 + y = r2 sin2θ      ....(iv)

Squaring (iii) and adding it with (iv), we get

x2 + y+ z2 = r2

180.

If x = a (1 + cos θ cos ϕ), y = b (1 + cos θ sin ϕ) and z = c (1 + sin θ), then which of the following is correct?(a) \(\bigg(\frac{x-a}{a}\bigg)^2\) + \(\bigg(\frac{y-b}{b}\bigg)^2\) + \(\bigg(\frac{z-c}{c}\bigg)^2\)(b) \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)(c) x2 + y2 + z2 = a2 + b2 + c2 (d) \(\frac{(x-a)^2}{a}+\frac{(y-b)^2}{b}+\frac{(z-c)^2}{c}=1\)

Answer»

(a)  \(\bigg(\frac{x-a}{a}\bigg)^2\) +  \(\bigg(\frac{y-b}{b}\bigg)^2\) + \(\bigg(\frac{z-c}{c}\bigg)^2\)

Given, \(x\) = a (1 + cos θ cos ϕ) 

\(\frac{x}{a}\) = 1+ cos θ cos  ϕ ⇒ \(\frac{x}{a}\) - 1 cos θ cos ϕ 

\(\frac{x-a}{a}\) = cos θ cos ϕ                ...(i) 

Similarly, y = b (1 + cos θ sin ϕ ) 

\(\frac{y-b}{b}\) = cos θ sin ϕ                ...(ii) 

z = c (1+sin θ) ⇒ \(\frac{z-c}{c}\) = sin θ          ...(iii) 

Squaring eqns (i), (ii) and (iii) and adding, we get

\(\bigg(\frac{x-a}{a}\bigg)^2\) +  \(\bigg(\frac{y-b}{b}\bigg)^2\) + \(\bigg(\frac{z-c}{c}\bigg)^2\)

= cos2 θ cos2 ϕ + cos2 θ sin2 ϕ + sin2 θ 

= cos2 θ (cos2 ϕ + sin2 ϕ) + sin2 θ 

= cos2 θ + sin2 θ = 1.

181.

Without using trigonometric tables, prove that(i) \(\frac{sin70°}{cos20°}+\frac{cosec20°}{sec70°}-2cos70°cosec20°= 0\)(ii) \(\frac{cos80°}{sin10°}+cos59°cosec31° = 2\)(iii) \(\frac{sin18°}{sin72°}+\sqrt3(tan10°tan30°tan40°tan50°tan80°) = 2°\)

Answer»

(i) LHS = \(\frac{sin70°}{cos20°}+\frac{cosec20°}{sec70°}-2cos70°cosec20°\)

\(\frac{sin70°}{sin(90° - 20°)}+\frac{sec(90°-20°)}{sec70°}- 2cos70°sec(90°-20°)\)

\(\frac{sin70°}{sin70°}+\frac{sec70°}{sec70°}-2cos70°sec70°\)

= 1 + 1 - 2 x cos70° x\(\frac{1}{cos70°}\)

= 2 - 2

= 0

 = RHs

(ii) LHS = \(\frac{cos80°}{sin10°}+cos59°cosec31°\)

\(\frac{cos80​°}{sin(90°-10°)}+sin(90°-59°)cosec31°\)

\(\frac{cos80°}{cos80°}+sin31°cosec31°\)

\(\frac{cos80°}{sin10°}+cos59°cosec31°\)

= 1 + sin31° x \(\frac{1}{sin31°}\)= 1 + 1

= 2

= RHS

(iii) LHS = \(\frac{sin18°}{sin72°}+\sqrt3(tan10°tan30°tan40°tan50°tan80°) \)

\(\frac{sin18°}{sin90°-72°}+\sqrt3[cot(90°-10°)\times\frac{1}{\sqrt3}\times{cot(90°-40°)}\times{tan50°}\times{tan80°}]\)

\(\frac{sin18°}{sin18°}+ \sqrt3(\frac{cos80°\times{cot50°}\times{tan50°}\times{tan80°})}{\sqrt3}\)

= 1 + 1

= 2

= RHS

182.

Without using trigonometric tables, prove that:(i) sin35°sin55° - cos35°cos55° = 0(ii) (sin72° + cos 18°)(sin 72° - cos 18°) = 0(iii) tan48°tan23°tan42°tan67° = 1

Answer»

(i) LHS =  sin35° sin55° - cos35°cos55°

= sin35°cos(90° - 55) - cos35°sin(90° - 55°)

= sin35°cos35° - cos 35° sin 35°

= 0

= RHS

(ii) LHS =  (sin72° + cos18°)(sin72° - scos18°)

= (sin72° + cos18°)(cos(90° - 72°)- cos 18°)

= (sin72° + cos18°) (cos 18° - cos18°)

= (sin72° + cos18°)(0)

= RHS

(iii) LHS = tan48° tan23° tan30° tan42° tan67°

= cot (90-48°) cot (90-23°) tan42° tan 67°

= cot42° cot67° tan 42° tan 67°

\(\frac{1}{tan 42^\circ} \times \frac{1}{tan 67 ^\circ} \times tan 42^\circ \times tan 67^\circ\)

= 1

= RHS

183.

Using the trigonometric table and evalute (a) `sin^(2)45^(@)+cos^(2)45^(@)` (b) `sec^(2)30^(@)-tan^(2)30^(@)`

Answer» (a) `sin^(2) 45^(@)+cos^(2)45^(@)`
`=((1)/(sqrt(2)))^(2)+((1)/(sqrt(2)))^(2)`
`=(1)/(2)+(1)/(2)=1`
Hence, `sin^(2)45^(@)+cos^(2)45^(@)=1`
(b) `sec^(2)30^(@)- tan^(2)30^(@)`
`=((2)/(sqrt(3)))^(2)-((1)/(sqrt(3)))^(2)`
`=(4)/(3)-(1)/(3)=(3)/(3)=1`
Hence , `sec^(2)30^(@)-tan^(2)30^(@)=1`
184.

Write using trigonometric tables, prove that:(i) tan2 66° - cot2 24° = 0(ii) sin2 48° + sin2 42° = 1(iii) cos2 57° - sin2 33° = 0(iv) (sin 65° + cos25°) (sin65° - cos 25°) = 0

Answer»

(i) LHS = tan2 66° - cot2 24°

 tan2(90° - 24°) - cot2 24°

= cot2 24° - cot2 24°

= 0

= RHS

(ii) LHS =  sin2 48° + sin2 42°

= sin2(90° - 42°) + sin2 42°

= cos2 42° + sin2 42°

= 1

= RHS

(iii) LHS =  cos2 57° - sin2 33°

= cos2 (90° - 33°) + sin2 33°

= sin2 33° - sin2 33°

= 0

= RHS

(iv) LHS = (sin 65° + cos25°) (sin65° - cos 25°)

= sin2 65° - cos2 25°

= sin2(90° - 25°) - cos2 25°

= cos2 25° - cos2 25°

= 0

= RHS

185.

If sin(A + B) = sin A cos B + cos A sin B and cos(A - B) = cos A cos B + sin A sin B, find the values of sin 75°.

Answer»

Given: sin (A + B) = sin A cos B + cos A sin B and

cos (A – B) = cos A cos B + sin A sin B

To find: sin 75°

Put A = 30° and B = 45°, then

sin 75° = sin 30° cos 45° + cos 30° sin 45°

= (1/2) × (1/√2) + (√3/2) × (1/√2)

= (1/2√2) + (√3/2√2)

= (1+√3)/2√2

186.

If sin(A + B) = sin A cos B + cos A sin B and cos(A - B) = cos A cos B + sin A sin B, find the values of cos 15°.

Answer»

Given: sin (A + B) = sin A cos B + cos A sin B and

cos (A – B) = cos A cos B + sin A sin B

Find cos 75°

Put A = 45° and B = 30°, then

cos 15° = cos 45° cos 30° + sin 45° sin 30°

= (1/√2) × (√3/2) + (1/√2) × (1/2)

= (√3 / 2√2) + (1/2√2)

= (1+√3)/2√2

187.

Find the polar co-ordinates of points whose Cartesian co-ordinates are:  (5, 5) 

Answer»

(x, y) = (5, 5) 

∴ r = \(\sqrt{x^2+y^2} = \sqrt{25+25}\)

\(\sqrt{50} = 5\sqrt{2}\)

tan θ = y/x = 5/5 = 1 

Since the given point lies in the 1st quadrant, 

θ = 45° …[∵ tan 45° = 1] 

∴ the required polar co-ordinates are ( \(5\sqrt{2}\), 45°).

188.

Find the polar co-ordinates of points whose Cartesian co-ordinates are: (-1, -1) 

Answer»

(x, y) = (-1, -1) 

∴ r = \(\sqrt {x^2+y^2} = \sqrt{1+1}=\sqrt2\)

tan θ = \(\frac{y}{x} = \frac {-1}{-1}=1\)

∴ tan θ = tan π/4

Since the given point lies in the 3rd quadrant, 

tan θ = tan (π + π/4) …[∵ tan (n + x) = tan x] 

∴ tan θ = tan (5π/4)

∴ θ = (5π/4) = 225° 

∴ the required polar co-ordinates are ( \(\sqrt2\), 225°).

189.

Find the Cartesian co-ordinates of points whose polar co-ordinates are: i. (3, 90°) ii. (1, 180°)

Answer»

i. (r, θ) = (3, 90°) 

Using x = r cos θ and y = r sin θ, where (x, y) are the required cartesian co-ordinates, we get 

x = 3cos 90° and y = 3sin 90° 

∴ x = 3(0) = 0 and y = 3(1) = 3 

∴ the required cartesian co-ordinates are (0, 3). 

ii. (r, θ) = (1, 180°) 

Using x = r cos θ and y = r sin θ, where (x, y) are the required cartesian co-ordinates, we get

x = 1(cos 180°) and y = 1(sin 180°) 

∴ x = -1 and y = 0 

∴ the required cartesian co-ordinates are (-1, 0).

190.

Find the polar co-ordinates of points whose Cartesian co-ordinates are: (-√3,1)

Answer»

(x, y) = (- √ 3, 1) 

∴ r = \(\sqrt{x^2+y^2} = \sqrt{3+1}=\sqrt4=2\)

tan θ = \(\frac{y}{x} = \frac {1}{-\sqrt3}=-tan \frac{\pi}{6}\)

Since the given point lies in the 2nd quadrant, 

tan θ = tan (π-π/6) …[∵ tan (π – x) = – tan x] 

∴ tan θ = tan (5π/6)

∴ θ = (5π/6)= 150° 

∴ the required polar co-ordinates are (2, 150°)

191.

Find the polar co-ordinates of points whose Cartesian co-ordinates are: (1,√3 ) 

Answer»

(x, y) = ( 1,√3)

∴ r =\(\sqrt{x^2+y^2} = \sqrt{1+3} = \sqrt4 = 2\)

tan θ = \(\frac{y}{x} = \frac {\sqrt3}{1} =\sqrt3\)

Since the given point lies in the 1st quadrant, 

θ = 60° …[∵ tan 60° = √3] 

∴ the required polar co-ordinates are (2, 60°).

192.

If sin(A + B) = 1 and cos(A – B) = √3/2, then find A and B.

Answer»

Given : sin (A+B) =1

⇒ Sin(A+B) = sin (90o) [∵ sin (90o)=1]

On equating both the sides, we get

A + B = 90o …(1)

And cos(A - B) = 3/2

⇒ cos(A – B) = cos (30o) [cos(30o) = √3/2]

On equating both the sides, we get

A – B = 30o …(2)

On Adding Eq. (1) and (2), we get

2A = 120o

⇒ A = 60o

Now, Putting the value of A in Eq.(1), we get

60o + B = 90o

⇒ B = 30o

Hence, A = 60o and B = 30o

193.

If sin (A + B) = 1 and cos (A – B) = 1, find A and B.

Answer»

Given : sin (A+B) =1

⇒ Sin(A+B) = sin (90o) [∵ sin (90o) =1]

On equating both the sides, we get

A + B = 90o …(1)

And cos (A – B) = 1

⇒ cos(A – B) = cos (0o) [∵ cos(0o) = 1]

On equating both the sides, we get

A – B = 0o …(2)

On Adding Eq. (1) and (2), we get

2A = 90o

⇒ A = 45o

Now, Putting the value of A in Eq.(1), we get

45o + B = 90o

⇒ B = 45o

Hence, A = 45o and B = 45o

194.

If sin (A + B) = cos (A – B) = √3/2, find A and B.

Answer»

Given : sin(A + B) = 3/2

⇒ Sin(A+B) = sin (60o) [sin(60o) = √3/2]

On equating both the sides, we get

A + B = 60o …(1)

And cos(A - B) = 3/2

⇒ cos(A – B) = cos (30o[cos(30o) = √3/2]

On equating both the sides, we get

A – B = 30o …(2)

On Adding Eq. (1) and (2), we get

2A = 90o

⇒ A = 45o

Now, Putting the value of A in Eq.(1), we get

45o + B = 60o

⇒ B = 15o

Hence, A = 45o and B = 15o

195.

If sin (A – B) = 1/2, cos(A + B) = 1/2; 0° < A + B < 90°; A > B, find A and B.

Answer»

Given : sin(A - B) = 1/2

⇒ Sin(A-B) = sin (30o) [sin (30o) = 1/2]

On equating both the sides, we get

A - B = 30o …(1)

And cso (A + B) = 1/2

⇒ cos(A + B) = cos (60o[cos (60o) = 1/2]

On equating both the sides, we get

A + B = 60o …(2)

On Adding Eq. (1) and (2), we get

2A = 90o

⇒ A = 45o

Now, Putting the value of A in Eq.(2), we get

45o + B =60o

⇒ B = 15o

Hence, A = 45o and B = 15o

196.

If sin (A + B + C) = 1, tan (A – B) = \(\frac{1}{\sqrt3}\) and sec (A + C) = 2, then find the values of the angles A, B and C in degrees.

Answer»

sin (A + B + C) = 1 ⇒ sin (A + B + C) = sin 90° ⇒ A + B + C = 90°            …(i) 

tan (A – B) = \(\frac{1}{\sqrt3}\) ⇒ tan (A – B) = tan 30° ⇒ A – B = 30°                   …(ii) 

sec (A + C) = 2 ⇒ sec (A + C) = sec 60° ⇒ A + C = 60°               …(iii) 

Eq (i) – Eq (iii) ⇒ B = 30° 

∴ From eqn (ii), A – 30° = 30° ⇒ A = 60° 

∴ From eqn (i), 60° + 30° + C = 90° ⇒ C = 0° ⇒ A = 60°, B = 30°, C = .

197.

If A + B = 90°, then what is the value of \(\sqrt{\text{sin A sec B - sin A cos B}}\,?\)

Answer»

Given A + B = 90°

∴ \(\sqrt{\text{sin A sec B - sin A cos B}}\)

\(\sqrt{\text{sin A sec (90°- A) - sin A cos (90° - A)}}\)

\(\sqrt{\text{sin A cosec A - sin A. sin A}}\) 

\(\sqrt{1-sin^2 A}\) = \(\sqrt{cos^2 A}\) = cos A.

198.

If p sin x = q and x is acute then \(\sqrt{p^2-q^2}\) tan x is equal to(a) p (b) q (c) pq (d) p + q

Answer»

(b) q

\(\sqrt{p^2-q^2}\) tan \(x\)\(\sqrt{p^2-q^2\,sin^2\,x.}\,tan\,x\)

\(\sqrt{p^2(1-sin^2\,x).}\) tan \(x\) = \(p\sqrt{1-sin^2\,x}.\,tan\,x\)   (∵cos2θ + sin2θ = 1)

\(p\sqrt{cos^2\,x.}\) tan \(x\) = p cos \(x\). tan \(x\) = p sin \(x\) = q

199.

If 8 tan A = 15, then the value of \(\frac{sin\,A-cos\,A}{sin\,A+cos\,A}\) is(a) \(\frac7{23}\) (b) \(\frac{11}{23}\)(c) \(\frac{13}{23}\)(d) \(\frac{17}{23}\)

Answer»

(a) \(\frac7{23}\)

8 tan A = 15, ⇒ tan A = \(\frac{15}{8}\)

Now, \(\frac{sin\,A-cos\,A}{sin\,A+cos\,A}\) = \(\frac{\frac{sin\,A}{cos\,A}-\frac{cos\,A}{cos\,A}}{\frac{Sin\,A}{cos\,A}+\frac{cos\,A}{cos\,A}}\)

\(\frac{tan\,A-1}{tan\,A+1}\)

Now, substitute the value of tan A.

200.

If sin θ : cos θ :: a : b, then the value of sec θ is(a) \(\frac{\sqrt{a^2+b^2}}{a}\)(b) \(\frac{b}{\sqrt{a^2+b^2}}\)(c) \(\frac{\sqrt{a^2+b^2}}{b}\)(d) \(\frac{a}{\sqrt{a^2+b^2}}\)

Answer»

(c) \(\sqrt{\frac{a^2+b^2}{b}}\)

Given, \(\frac{sin\,\theta}{cos\,\theta}=\frac{a}{b}\) ⇒ tan θ = \(\frac{a}{b}\)

Also, sec2 θ = 1 + tan2θ ⇒ 2 sec θ = \(\sqrt{1+tan^2\,\theta}\)

⇒ sec θ = \(\sqrt{1+\frac{a^2}{b^2}}=\) \(\sqrt{\frac{b^2+a^2}{b^2}}=\)\(\sqrt{\frac{a^2+b^2}{b}}\)