Saved Bookmarks
| 1. |
If cos2B = \(\frac{cos\,(A+B)}{cos\,(A-C)}\), then show that tan A, tan B and tan C are in G.P. |
|
Answer» cos2B = \(\frac{cos\,(A+B)}{cos\,(A-C)}\) ⇒ \(\frac{1-tan^2\,B}{1+tan^2\,B}\) = \(\frac{cos\,A\,cos\,C-sin\,A\,sin\,C}{cos\,A\,cos\,C\,sin\,A\,sin\,C}\) ⇒ \(\frac{1-tan^2\,B}{1+tan^2\,B}\) = \(\frac{1-tan\,A\,tan\,C}{1+tan\,A\,tan\,C}\) (On dividing the numerator and denominator of RHS by cos A cos C) ⇒ 1 + tan A tan C – tan2 B – tan A tan2 B tan C = 1 + tan2 B – tan A tan C – tan A tan2 B tan C ⇒ 2 tan A tan C = 2 tan2 B ⇒ tan A . tan C = tan2 B ⇒ tan A, tan B, tan C are in G.P |
|