Saved Bookmarks
| 1. |
Prove:(√3+1) (3 – cot 30°) = tan3 60° – 2 sin 60° |
|
Answer» L.H.S: (√3 + 1) (3 – cot 30°) = (√3 + 1) (3 – √3) [∵cos 30° = √3] = (√3 + 1) √3 (√3 – 1) [∵(3 – √3) = √3 (√3 – 1)] = ((√3)2– 1) √3 [∵ (√3+1)(√3-1) = ((√3)2 – 1)] = (3-1) √3 = 2√3 Similarly solving R.H.S: tan3 60° – 2 sin 60° Since, tan 60o = √3 and sin 60o = √3/2, We get, (√3)3 – 2.(√3/2) = 3√3 – √3 = 2√3 Therefore, L.H.S = R.H.S Hence, proved. |
|