1.

Prove:(√3+1) (3 – cot 30°) = tan3 60° – 2 sin 60°

Answer»

L.H.S: (√3 + 1) (3 – cot 30°)

= (√3 + 1) (3 – √3) [∵cos 30° = √3]

= (√3 + 1) √3 (√3 – 1) [∵(3 – √3) = √3 (√3 – 1)]

= ((√3)2– 1) √3 [∵ (√3+1)(√3-1) = ((√3)2 – 1)]

= (3-1) √3

= 2√3

Similarly solving R.H.S: tan3 60° – 2 sin 60°

Since, tan 60o = √3 and sin 60o = √3/2,

We get,

(√3)3 – 2.(√3/2) = 3√3 – √3

= 2√3

Therefore, L.H.S = R.H.S

Hence, proved.



Discussion

No Comment Found