1.

Find sin θ such that 3cos θ + 4sin θ = 4.

Answer»

3cos θ + 4sin θ = 4 

∴ 3cos θ = 4(1 – sin θ) 

Squaring both the sides, we get . 

9cos2 θ = 16(1 – sin θ)2 

∴ 9(1 – sin2 θ) = 16(1 + sin2 θ – 2sin θ) 

∴ 9 – 9sin2 θ = 16 + 16sin2 θ – 32sin θ 

∴ 25sin2 θ – 32sin θ + 7 = 0 

∴ 25sin2 θ – 25sin θ – 7sin θ + 7 = 0 

25sin θ (sin θ – 1) – 7 (sin θ – 1) = 0 

∴ (sin θ – 1) (25sin θ – 7) = 0 

∴ sin θ – 1 = 0 or 25 sin θ – 7 = 0 

∴ sin θ = 1 or sin θ = 7/25

Since, -1 ≤ sin θ ≤ 1 

∴ sin θ = 1 or 7/25



Discussion

No Comment Found