1.

If (sin α + cosec α)2 + (cos α + sec α)2 = k + tan2 α + cot2 α, then the value of k is equal to(1) 9(2) 7(3) 5(4) 3

Answer»

Answer is (2) 7

(sin α + cosec α)2 + (cos α + sec α)2 = k + tan2 α + cot2 α

sin2 α + cosec2 α + 2 sin α cosec α + cos2 α + secα + 2 cos α sec α = k + tan2 α + cot2 α

sin2 α + cos2 α + cosec2 α + sec2 α + 2 sin α x + \(\frac{1}{sin\alpha}\) 2 cos α x \(\frac{1}{cos\alpha}\) = k + tan2 α + cot2 α

1 + 1 + cot2 α + 1 + tan2 α + 2 + 2 = k + tan2 α + cot2 α

7 + cot2 α + tan2 α = k + tan2 α + cot2 α

∴ k = 7



Discussion

No Comment Found