1.

a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to …(1) a2 – b2(2) b2 – a2(3) a2 + b2(4) b – a

Answer»

(2) b2 – a2

p2 – q2 = (p + q) (p – q)

= (a cot θ + b cosec θ + b cot θ + a cosec θ) (a cot θ + b cosec θ – b cot θ – a cosec θ)

= [cot θ (a + b) + cosec θ (a + b)] [cot θ (a – b) + cosec θ (b – a)]

= (a + b) [cot θ + cosec θ] (a – b) [cosec θ (a – b)]

= (a + b) [cot θ + cosec θ] (a – b) [cot θ – cosec θ]

= (a + b) (a – b) (cot2 θ – cosec2 θ)

= (a2 – b2) (-1) = – (a2 – b2)

p2 – q2 = b2 – a2



Discussion

No Comment Found