1.

Find the smallest positive value of x satisfying the equation logcos x sin x + logsin x cos x = 2

Answer»

Let logcos x sin x = p. Then, logsin x cos x = \(\frac{1}{p}\)

∴ log cos x sin x + log sin x cos x = 2 

⇒ p + \(\frac{1}{p}\) = 2 

⇒ p2 – 2p + 1 = 0 

⇒ (p – 1)2 = 0 

⇒ p = 1 

⇒ log cos x sin x = 1 

⇒ sin x = cos x 

The smallest positive value of x for which sin x = cos x is x = \(\frac{\pi}{4}\) .



Discussion

No Comment Found