Saved Bookmarks
| 1. |
Find the smallest positive value of x satisfying the equation logcos x sin x + logsin x cos x = 2 |
|
Answer» Let logcos x sin x = p. Then, logsin x cos x = \(\frac{1}{p}\). ∴ log cos x sin x + log sin x cos x = 2 ⇒ p + \(\frac{1}{p}\) = 2 ⇒ p2 – 2p + 1 = 0 ⇒ (p – 1)2 = 0 ⇒ p = 1 ⇒ log cos x sin x = 1 ⇒ sin x = cos x The smallest positive value of x for which sin x = cos x is x = \(\frac{\pi}{4}\) . |
|