1.

The general value of θ obtained from the equation cos 2θ = sin α is (a)  θ = 2nπ ± \(\big(\) \(\frac{π}{2}\) - α \(\big)\)(b)  θ = \(\frac{nπ +(-1)^n\alpha}{2}\) (c)  θ = nπ ± \(\big(\) \(\frac{π}{4}\) - \(\frac{α}{2}\) \(\big)\)(d) 2θ = \(\frac{π}{2}\) –  α

Answer»

Answer : (c) =  θ = nπ ± \(\big( \frac{\pi}{4} -\frac{\alpha}{2}\big)\)

cos 2θ = sin α ⇒ cos 2θ = cos \(\big( \frac{\pi}{2} -\alpha\big)\) 

⇒ 2θ = 2nπ ± \(\big( \frac{\pi}{2} -\alpha\big)\) (∵ cos θ = cos α ⇒ θ = 2nπ ± α)

⇒ θ = nπ ± \(\big( \frac{\pi}{4} -\frac{\alpha}{2}\big)\)



Discussion

No Comment Found