Saved Bookmarks
| 1. |
If the equation tan θ + tan 2θ + tan θ . tan 2θ = 1, θ =(a) \(\frac{nπ}{6}\) +\(\frac{π}{6}\)(b) \(\frac{nπ}{2}\) + 6(c) \(\frac{nπ}{3}\)+ \(\frac{π}{12}\)(d) \(\frac{nπ}{2}\)+\(\frac{π}{12}\) |
|
Answer» Answer : (c) \(\frac{n\pi}{3}\)+ \(\frac{\pi}{12}\) tan θ + tan 2θ = 1 – tan θ . tan 2θ ⇒ \(\frac{tan\,θ +tan\,2θ}{1- tan\,θ\,tan\,2θ}\) =1 ⇒ tan (θ + 2θ) = 1 \(\big( \because tan\,(A+B) = \frac{tan\,A+tan\,B}{1-tan\,A\,tan\,B}\big)\) ⇒ tan 3θ = tan \(\frac{\pi}{4}\) ⇒ 3θ = nπ + \(\frac{\pi}{4}\) ⇒ θ = \(\frac{n\pi}{3}\)+ \(\frac{\pi}{12}\). |
|