Saved Bookmarks
| 1. |
Prove the following:2.sec2 θ – sec4 θ – 2.cosec2 θ + cosec4 θ = cot4 θ – tan4 θ |
|
Answer» LHS = 2.sec2 θ – sec4 θ – 2.cosec2 θ + cosec4 θ = 2 sec2 θ – (sec2 θ)2 – 2cosec2 θ + (cosec2 θ)2 = 2(1+ tan2 θ) – (1+ tan2 θ)2 – 2(1+ cot2 θ) + (1+ cot2 θ)2 = 2 + 2tan2 θ – (1 + 2tan2 θ + tan4 θ) – 2 – 2cot2 θ + 1 + 2cot2 θ + cot4 θ = 2 + 2.tan2 θ – 1 – 2 tan2 θ – tan4 θ – 2 – 2 cot2 θ + 1 + 2 cot2 θ + cot4 θ = cot4 θ – tan4 θ = R.H.S. |
|