1.

Find the general values of θ if (i) 2 sin θ – 1 = 0 (ii) cos θ = \(-\frac{1}{2}\)(iii) 4 sin2θ = 1 (iv) tan 2x – \(\sqrt{3}\) = 0 (v) 2 cot2 θ = cosec2 θ

Answer»

(i) 2 sin θ – 1 = 0 

⇒sin θ = \(\frac{1}{2}\) = sin \(\frac{\pi}{6}\) 

⇒ θ = nπ + (–1)n \(\frac{\pi}{6}\) , n∈I 

(ii) cos θ =  − \(\frac{1}{2}\)

= cos (180° – 60°) = cos ( π - \(\frac{\pi}{3}\) ) = cos \(\frac{2\pi}{3}\)

∴ θ = 2nπ \(\pm\) \(\frac{2\pi}{3}\),  n∈I 

(iii) 4 sinθ = 1 

⇒ \(\frac{4(1-cos\,2\theta)}{2}\) = 1 

⇒ 2(1 - cos 2θ) =1 ⇒ 1-cos 2θ = \(\frac{1}{2}\) ⇒ cos 2θ = \(\frac{1}{2}\) = cos \(\frac{\pi}{3}\)

∴ 2θ = 2nπ ± \(\frac{\pi}{3}\) 

⇒ θ = nπ ± \(\frac{\pi}{6}\)

(iv) tan 2x – \(\sqrt{3}\) = 0 

⇒ tan 2x = \(\sqrt{3}\) = tan \(\frac{\pi}{3}\) 

⇒ 2x = nπ + \(\frac{\pi}{3}\) 

⇒ x = \(\frac{n\pi}{2}\) + \(\frac{\pi}{6}\) , n ∈ I 

(v) 2 cotθ = cosecθ 

⇒ 2 cotθ = 1 + cotθ 

⇒ cotθ = 1

⇒ cot θ = ± 1

= cot (± \(\frac{\pi}{4}\)

⇒ θ = nπ ± \(\frac{\pi}{4}\) ,  n ∈ I



Discussion

No Comment Found