1.

Prove the following identities :1 – 2sin2θ + sin4θ = cos4θ

Answer»

Taking LHS = 1 – 2 sin2 θ + sin4 θ

We know that,

cos2 θ + sin2 θ = 1

= 1– 2 sin2 θ + (sin2 θ)2

= 1 – 2 sin2 θ + (1 – cos2 θ)2

= 1 – 2 sin2 θ +1 + cos4 θ – 2cos2θ

= 2 – 2(cos2 θ + sin2θ) + cos4 θ

= 2 – 2(1) + cos4 θ

= cos4 θ

= RHS

Hence Proved



Discussion

No Comment Found