Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

151.

Write the discriminate of each of the following quadratic equation:√3 x2 - 2√2 – 2√3 = 0

Answer»

d = b2– 4ac

d = (–2√2)2 – 4 (√3) (–2√3)

d = 8 + 24

d = 32

152.

The roots of the quadratic equation x2 + 8x + 7 = 0 are A) 1, 7 B) -1, -7 C) -1, 7 D) 1, -7

Answer»

Correct option is (B) -1, -7

Given quadratic equation is

\(x^2+8x+7=0\)

\(\Rightarrow x^2+7x+x+7=0\)

\(\Rightarrow\) x (x+7) + 1 (x+7) = 0

\(\Rightarrow\) (x+7) (x+1) = 0

\(\Rightarrow\) x+7 = 0 or x+1 = 0

\(\Rightarrow\) x = -7 or x = -1

Hence, roots of given quadratic equation are x = -1 & x = -7.

Correct option is B) -1, -7

153.

If the roots of the equations ax2 + 2bx + c = 0 and \(b\text{x}^2-2\sqrt{ac\text{x}}+b=0\) are simultaneously real, then prove that b2 = ac.

Answer»

For a quadratic equation, ax2 + bx + c = 0,

D = b2 – 4ac

If D ≥ 0, roots are real

ax2 + bx + c = 0,

⇒ b2 ≥ ac ------ (1)

\(b\text{x}^2-2\sqrt{acx}+b=0\)

⇒ 4ac – 4b2 ≥ 0 

⇒ b2 ≤ ac ----- (2)

For both (1) and (2) to be true

⇒ b2 = ac

154.

Find the nature of roots of the following quadratic equations:(i) 2x2 - 8x + 5 = 0(ii) 3x2 - 2√6x + 2 = 0(iii) 5x2 - 4x + 1 = 0

Answer»

(i) The given equation is 2x2 - 8x + 5 = 0

This is of the form ax2 + bx + c = 0, where a = -8 and c = 5

∴ Discriminant, D = b2 - 4ac = (-8)2 - 4 x 2 x 5 = 64 - 40 = 24 > 0

Hence, the given equation has real and unequal roots.

(ii) The given equation is 3x2 - 2√6x + 2 = 0

This is of the form ax2 + bx + c, where a = 3, b = -2√6 and c = 2.

∴ Discriminant, D = b2 - 4ac = (-2√6)2 - 4 x 3 x 2 = 24 - 24 = 0

Hence, the given equation has real and equal roots.

(iii) The given equation is 5x2 - 4x + 1 = 0

This is of the form ax2 + bx + c = 0, where a = 5,b = -4 and c = 1

∴ Discriminant, D = b2 - 4ac = (-4)2 - 4 x 5 x 1 = 16 - 20 = -4 < 0

Hence, the given equation has no real roots.

155.

If the roots of the equations ax2 + 2bx + c = 0 and bx2 - 2\(\sqrt{acx}\)+ b = 0 are simultaneously real then prove that b2 = ac

Answer»

It is given that the roots of the equations ax2 + 2bx + c = 0 are real.

∴ D1 = (2b)2 - 4 x a x c ≥ 0

⇒ 4(b2 - ac) ≥ 0

⇒ b2 - ac ≥ 0.........(i)

Also, the roots of the equation bx2 - 2\(\sqrt{acx}\) + b = 0 are equal

∴ D1 = (-2\(\sqrt{ac}\))2 - 4 x b x b ≥ 0

⇒ 4(ac - b2) ≥ 0

⇒ -4(b2 - ac) ≥ 0

⇒ b2 - ac ≥ 0........(2)

The roots of the given equations are simultaneously real if (1) and (2) holds true together. This is possible if

b2 - ac = 0

⇒ b2 = ac

156.

If the quadratic equation (1 + m2) x2 + 2mcx + c2 – a2 = 0 has equal roots, prove that c2 = a2 (1 + m2).

Answer»

(1 + m2) x2 + 2mcx + c2 – a2 = 0

Compare given equation with the general form of quadratic equation, which is ax2 + bx + c = 0

a = (1 + m2), b = 2mc and c = c2 – a2

Since roots are equal, so D = 0

(2mc)2 – 4.(1 + m2)(c– a2) = 0

4 m2c2 – 4c2 + 4a2 – 4 m2c2 + 4 m2a2 = 0

a2 + m2a2 = c2

or c2 = a2 (1 + m2)

Hence Proved

157.

Find the nature of roots of the following quadratic equations:(i) 5x (x - 2) + 6 = 0(ii) 12x2 - 4\(\sqrt{15}\)x + 5 = 0(iii) x2 - x + 2 = 0

Answer»

(i) The given equation is

5x (x - 2) + 6 = 0

⇒ 5x2 - 10x + 6 = 0

This is of the form ax2 + bx + c = 0,where a = 5,b = -10 and c = 6

∴ Discriminant, D = b2 - 4ac = (-10)2 - 4 x 5 x 6 = 100 - 120 = - 20 <0

Hence, the given equation has real and equal roots.

(ii) The given equation is 12x2 - 4\(\sqrt{15}\)x + 5 = 0

This is of the form ax2 + bx + c = 0,where a = 12,b = -4\(\sqrt{15}\) and c = 5

∴ Discriminant, D = b2 - 4ac = (- 4\(\sqrt{15}\))2 - 4 x 12 x 5 = 240 - 240 = 0

Hence, the given equation has real and equal roots.

(iii) The given equation is x2 - x + 2 = 0

This is of the form ax2 + bx + c = 0,where a = 1,b = -1 and c = 2

∴ Discriminant, D = b2 - 4ac = (- 1)2 - 4 x 1 x 2 = 1 - 8 = -7 < 0

Hence, the given equation has no real roots.

158.

Find the values of k quadratic equation x2 - kx + 9 = 0 has real and distinct roots.

Answer»

a = 1, b = – k, c = 9

For real and distinct roots, then D > 0

(-k)2 – 36 > 0

k > 6 

or k < -6

159.

Find the value of p for which the quadratic equation 2x2 + px + 8 = 0 has real roots.

Answer»

Given:

2x2 + px + 8 = 0

Here

a = 2, b = p and c = 8

Discriminant D is given by:

D = (b2 - 4ac)

= p2 - 4 x 2 x 8

= (p2 - 64)

If D ≥ 0, the roots of the equation will be real

⇒ (p2 - 64) ≥ 0

⇒ (p + 8) (p - 8) ≥ 0

⇒ p ≥ 8 and p ≤ - 8

Thus, the roots of the equation are real for p ≥ 8 and  p ≤ - 8.

160.

Determine the set of values of k for the given quadratic equation has real roots:kx2 + 6x + 1 = 0

Answer»

Given,

2x+ x + k = 0

It’s of the form of ax+ bx + c = 0

Where, a = 2, b = 1, c = k

For the given quadratic equation to have real roots D = b– 4ac ≥ 0

D = 12 – 4(2)(k) ≥ 0

⇒ 1 – 8k ≥ 0

⇒ k ≤ \(\frac{1}{8}\)

The value of k should not exceed \(\frac{1}{8}\) to have real roots.

161.

Find the values of k for equation has real and distinct roots.kx2 + 6x + 1 = 0

Answer»

Given,

kx2 + 6x + 1 = 0

It’s of the form of ax+ bx + c = 0

Where, a =k, b = 6, c = 1

For the given quadratic equation to have real roots D = b– 4ac > 0

D = (6)2 – 4(1)(k) > 0

⇒ 36 – 4k > 0

⇒ 4k < 36

⇒ k < 9

The value of k should be lesser than 9 to have real and distinct roots.

162.

Find the value of k for which the roots of 9x2 + 8kx + 16 = 0 are real and equal

Answer»

Given:

9x2 + 8kx + 16 = 0

Here

a = 9,b = 8k and c = 16

It is given that the roots of the equation are real and equal; therefore, we have:

D = 0

⇒ (b2 - 4ac) = 0

⇒ (8k)2 - 4 x 9 x 16 = 0

⇒ 64k2 - 576 = 0

⇒ 64k2 = 576

⇒ k2 = 9

⇒ k = ≠3

∴ k = 3 or k = -3

163.

Find the roots of quadratic equations 12abx2 - (9a2 - 8b2)x - 6ab = 0

Answer»

Given

12abx2 - (9a2 - 8b2)x - 6ab = 0

⇒ 12abx2 - 9a2x + 8b2x - 6ab = 0

⇒ 3ax (4bx - 3a) + 2b (4bx - 3a) = 0

⇒ (3ax + 2b) (4bx - 3a) = 0

⇒ 3ax + 2b = 0 or 4bx - 3a = 0

⇒ x = -2b/3a or x = 3a/4b

Hence, the roots of the equation are -2b/3a and 3a/4b.

164.

State whether the quadratic equation 3x2 – 4x + 1 = 0 have two distinct real roots. Justify your answer.

Answer»

The equation 3x2 – 4x + 1 = 0 has two real and distinct roots.

D = b2 – 4ac

= (-4)2 – 4(3)(1)

= 16 – 12 > 0

Hence, the roots are real and distinct.

165.

State whether the quadratic equation 2x2 – 6x + 9/2 = 0 have two distinct real roots. Justify your answer.

Answer»

The equation 2x2 – 6x + (9/2) = 0 has real and equal roots.

D = b2 – 4ac

= (-6)2 – 4(2) (9/2)

= 36 – 36 = 0

Hence, the roots are real and equal.

166.

State whether the quadratic equation 2x2 + x – 1 = 0 have two distinct real roots. Justify your answer.

Answer»

The equation 2x2 – 6x + (9/2) = 0 has real and equal roots.

D = b2 – 4ac

= (-6)2 – 4(2) (9/2)

= 36 – 36 = 0

Hence, the roots are real and equal.

167.

Find the roots of the following quadratic equations:a2b2x2 + b2x – a2x - 1 = 0, a ≠ 0, b ≠ 0

Answer»

b2x {a2x + 1} – 1 {a2x + 1} = 0

(b2x – 1) (a2x + 1) = 0

b2x – 1 = 0 a2x + 1 = 0

x = 1/b2, x = -1/a2

Therefore, the roots of the equation are 1/b2,  -1/a2​​​​​​​.

168.

Find the roots of quadratic equations 4x2 - 2(a2 + b2)x + a2b2 = 0

Answer»

Given

4x2 - 2(a2 + b2)x + a2b2 = 0

⇒ 4x2 - 2a2x - 2b2x + a2b2 = 0

⇒ 2x(2x - a2) - b2(2x - a2) = 0

⇒ (2x - b2) (2x - a2) = 0

⇒ 2x - b2 = 0 or 2x - a2 = 0

⇒ x = b2/2 or x = a2/2

Hence, the roots of the equation are b2/2 and a2/2

169.

State whether the quadratic equation √2x2 – 3x/√2 + ½ = 0 have two distinct real roots. Justify your answer.

Answer»

The equation √2x2 – 3x/√2 + ½ = 0 has two real and distinct roots.

D = b2 – 4ac

= (- 3/√2)2 – 4(√2) (½)

= (9/2) – 2√2 > 0

Hence, the roots are real and distinct.

170.

Find the roots of each of the following quadratic equations if they exist by the method of completing the squares:x2 – 6x + 4 = 0

Answer»

x2 – 6x = –4

Add the coefficient of (x/2)2 to both sides

x2 – 6x + (3)2 = –4 + (3)2

(x – 3)2 = –4 + 9

x – 3 = √5

x = ±√5 + 3

171.

Find the roots of the following quadratic equation, if they exist, by the method of completing the square:x2 + 5 = -6x

Answer»

The given Q.E. is x2 + 5 = -6x 

⇒ x2 + 6x = -5 

⇒ (x)2 + 2.(x).3 = -5 

Now L.H.S. is of the form a2 + 2ab where b = 3. 

Adding b2 = 32 on both sides we get 

x2 + 2(x)(3) + 32 = -5 + 32 

(x + 3)2 = -5 + 9 = 4 

∴ x + 3 = 74 = ± 2 

⇒ x = +2 – 3 or – 2 – 3 

\(\therefore\) x= -1 or -5 are the roots of the given Q.E.

172.

Find the roots of the following equations, if they exist, by applying the quadratic formula:x2 + x + 2 = 0

Answer»

The given equations is x2 + x + 2 = 0

Comparing it with ax2 +bx + c = 0.we get

a = 1, b = 1  and c = 2

∴ Discriminant d = b- 4ac = 12 - 4 x 1 x 2 = 1 - 8 = - 7 < 0

Hence, the given equation has no real roots (or real roots does not exist).

173.

The roots of the quadratic equation 2x2 -2√2x + 1 = 0 are ……………A) √2, 1/√2B) 1/2, 1/2C) 1/√2, 1/√2D) √2,√2

Answer»

Correct option is (C) 1/√2, 1/√2

Given quadratic equation is

\(2x^2-2\sqrt{2}x+1=0\)

\(\Rightarrow2x^2-\sqrt{2}x-\sqrt{2}x+1=0\)

\(\Rightarrow\sqrt{2}x(\sqrt{2}x-1)-1(\sqrt{2}x-1)=0\)

\(\Rightarrow(\sqrt{2}x-1)(\sqrt{2}x-1)=0\)

\(\Rightarrow\sqrt{2}x-1=0\) \(or\;\sqrt{2}x-1=0\)

\(\Rightarrow\) \(x=\frac1{\sqrt2}\) or \(x=\frac1{\sqrt2}\)

Hence, the roots of given quadratic equation are \(\frac{1}{\sqrt{2}}\;and\;\frac{1}{\sqrt{2}}.\)

Correct option is C) 1/√2 , 1/√2

174.

Solve the following quadratic equations by factorization method: x2 + (1 – 2i)x – 2i = 0

Answer»

x2 + (1 – 2i)x – 2i = 0 

Given x2 + (1 – 2i)x – 2i = 0 

⇒ x2 + x – 2ix – 2i = 0 

⇒ x(x + 1) – 2i(x + 1) = 0 

⇒ (x + 1)(x – 2i) = 0 

⇒ x + 1 = 0 or x – 2i = 0 

∴ x = –1 or 2i 

Thus, the roots of the given equation are –1 and 2i.

175.

Solve the following quadratic equations by factorization method: x2 + 10ix – 21 = 0

Answer»

x2 + 10ix – 21 = 0 

Given x2 + 10ix – 21 = 0 

⇒ x2 + 10ix – 21 × 1 = 0 

We have i2 = –1 

⇒ 1 = –i2 

By substituting 1 = –i2 in the above equation, we get 

x2 + 10ix – 21(–i2) = 0 

⇒ x2 + 10ix + 21i2 = 0 

⇒ x2 + 3ix + 7ix + 21i2 = 0 

⇒ x(x + 3i) + 7i(x + 3i) = 0 

⇒ (x + 3i)(x + 7i) = 0

⇒ x + 3i = 0 or x + 7i = 0 

∴ x = –3i or –7i 

Thus, the roots of the given equation are –3i and –7i.

176.

Solve the following quadratic equations by factorization:\(25x(x+1)=-\,4\)

Answer»

In factorization, we write the middle term of the quadratic equation either as a sum of two numbers or difference of two numbers such that the equation can be factorized.

\(25x(x+1)=-4\)

⇒ 25x2 + 25x + 4 = 0 

⇒ 25x2 + 20x + 5x + 4 = 0 

⇒ 5x(5x + 4) + (5x + 4) = 0 

⇒ (5x + 1)(5x + 4) = 0 

⇒ x = -1/5, -4/5

177.

Solve the following quadratic equations by factorization:\(16x-\frac{10}{x}=27\)

Answer»

In factorization, we write the middle term of the quadratic equation either as a sum of two numbers or difference of two numbers such that the equation can be factorized.

\(16x-\frac{10}{x}=27\)

⇒ 16x2 – 27x – 10 = 0 

⇒ 16x2 – 32x + 5x – 10 = 0 

⇒ 16x(x – 2) + 5(x – 2) = 0 

⇒ (16x + 5)(x – 2) = 0 

⇒ x = -5/16, 2

178.

Find the roots of 6x2 – √2x – 2 = 0 by the factorisation of the corresponding quadratic polynomial.

Answer»

6x2 – √2x – 2 

= 6x2 – 3√2 x + 2√2 x – 2 

= 3x (2x – √2 ) + √2 (2x – √2 ) 

= (3x + √2 ) (2x – √2) 

Now, 6x2 – √2x – 2 = 0 gives (3x +√2 ) (2x –√2 ) = 0, i.e., 3x +√2 = 0 or 2x – √2 = 0 

So, the roots are −√2/3 and √2/2.

179.

Solve the following quadratic equations by factorization:\(\sqrt{3}x^{2}-2\sqrt{2}x-2\sqrt{3}=0\)

Answer»

In factorization, we write the middle term of the quadratic equation either as a sum of two numbers or difference of two numbers such that the equation can be factorized.

\(\sqrt{3}x^{2}-2\sqrt{2}x-2\sqrt{3}=0\)

⇒ √3x2 – 3√2x + √2x – 2√3 = 0 

⇒ √3x2 – √3×√3×√2x + √2x – 2×√3×√3 = 0

⇒ √3x2 – √3×√6x + √2x – √6×√3 = 0 

⇒ √3x(x - √6) + √2(x - √6) = 0 

⇒ (√3x + √2)(x - √6) = 0 

⇒ x = √6, -√(2/3)

180.

Solve the following quadratic equations by factorization:\(\sqrt{2}x^{2}-3x-2\sqrt{2}= 0\)

Answer»

In factorization, we write the middle term of the quadratic equation either as a sum of two numbers or difference of two numbers such that the equation can be factorized.

\(\sqrt{2}x^{2}-3x-2\sqrt{2}=0\)

⇒ √2x2 – 4x + x – 2√2 = 0 

⇒ √2x(x – 2√2) + (x – 2√2) = 0 

⇒ (√2x + 1)(x – 2√2) = 0 

⇒ x = -1/√2, 2√2

181.

Solve the following quadratic equations by factorization:\(\frac{2}{x + 1}+\frac{3}{2(x-2)}=\frac{23}{5x};x\neq0,-1,2\)

Answer»

In factorization, we write the middle term of the quadratic equation either as a sum of two numbers or difference of two numbers such that the equation can be factorized

\(\frac{2}{x + 1}+\frac{3}{2(x-2)}=\frac{23}{5x};x\neq0,-1,2\)

⇒ 5x(4x – 8 + 3x + 3) = 46(x + 1)(x – 2) 

⇒ 35x2 – 25x = 46x2 – 92 – 46x 

⇒ 11x2 - 19x - 92 = 0 

⇒ 11x2 - 44x + 23x – 92 = 0 

⇒ 11x(x – 4) + 23(x – 4) = 0 

⇒ (11x + 23)(x – 4) = 0 

⇒ x = 4, - 23/11

182.

Solve the following quadratic equations by factorization:\(4\sqrt{3}x^{2}+5x-2\sqrt{3}=0\)

Answer»

In factorization, we write the middle term of the quadratic equation either as a sum of two numbers or difference of two numbers such that the equation can be factorized.

\(4\sqrt{3}x^{2}+5x-2\sqrt{3}=0\)

⇒ 4√3x2 + 8x – 3x – 2√3 = 0 

⇒ 4x(√3x + 2) – √3(√3x + 2) = 0 

⇒ (4x - √3)(√3x + 2) = 0 

⇒ x = √3/4, - 2/√3

183.

Solve the following quadratic equations by factorization:\(3(\frac{7x+1}{5x-3})-4(\frac{5x-3}{7x+1})=11;x\neq\frac{3}{5},-\frac{1}{7}\)

Answer»

In factorization, we write the middle term of the quadratic equation either as a sum of two numbers or difference of two numbers such that the equation can be factorized.

\(3(\frac{7x+1}{5x-3})-4(\frac{5x-3}{7x+1})=11;x\neq\frac{3}{5},-\frac{1}{7}\)

⇒ 3(7x + 1)2 – 4(5x – 3)2 

= 11(5x – 3)(7x + 1) 

⇒ 3(49x2 + 1 + 14x) – 4(25x2 + 9 – 30x) 

= 11(35x2 – 3 – 16x) 

⇒ 338x2 – 338x = 0 

⇒ x(x – 1) = 0 

⇒ x = 0, 1

184.

Solve the following quadratic equations by factorization:\(5x^{2}-3x-2 = 0\)

Answer»

In factorization, we write the middle term of the quadratic equation either as a sum of two numbers or difference of two numbers such that the equation can be factorized.

\(5x^{2}-3x-2 = 0\)

⇒ 5x2 – 5x + 2x – 2 = 0

⇒ 5x(x – 1) + 2(x – 1) = 0 

⇒ (5x + 2)(x – 1) = 0 

⇒ x = -2/5, 1

185.

Solve the following quadratic equations by factorization:\(6x^{2}+11x+3= 0\) 

Answer»

In factorization, we write the middle term of the quadratic equation either as a sum of two numbers or difference of two numbers such that the equation can be factorized.

\(6x^{2}+11x+3=0\)

⇒ 6x2 + 9x + 2x + 3 = 0 

⇒ 3x(2x + 3) + (2x + 3) = 0 

⇒ (3x + 1)(2x + 3) = 0 

⇒ x = -1/3, - 3/2

186.

Solve the following quadratic equations by factorization method: 6x2 – 17ix – 12 = 0

Answer»

6x2 – 17ix – 12 = 0

Given 6x2 – 17ix – 12 = 0

⇒ 6x2 – 17ix – 12x1 = 0

We have i2 = –1 

⇒ 1 = –i2 

By substituting 1 = –i2 in the above equation, we get 

6x2 – 17ix – 12(–i2) = 0 

⇒ 6x2 – 17ix + 12i2 = 0 

⇒ 6x2 – 9ix – 8ix + 12i2 = 0 

⇒ 3x(2x – 3i) – 4i(2x – 3i) = 0 

⇒ (2x – 3i)(3x – 4i) = 0 

⇒ 2x – 3i = 0 or 3x – 4i = 0 

⇒ 2x = 3i or 3x = 4i

x = \(\frac{3}{2}i,or\frac{4}{3}i\) 

Thus, the roots of the given equation are

\(\frac{3}{2}i,or\frac{4}{3}i\)

187.

Solve the quadratic equations by factorization method only:21x2 + 9x + 1 = 0

Answer»

Given as 21x2 + 9x + 1 = 0

Now we shall apply discriminant rule,

Where, x = (-b ± √(b2 – 4ac))/2a

Since, a = 21, b = 9, c = 1

Therefore,

x = (-9 ± √(92 – 4 (21)(1)))/ 2(21)

= (-9 ± √(81 - 84))/42

= (-9 ± √(-3))/42

= (-9 ± √3(-1))/42

Then we have i2 = –1

On substituting –1 = i2 in the above equation, we get

x = (-9 ± √3i2)/42

= (-9 ± √(3i)2/42

= (-9 ± √3i)/42

= -9/42 ± √3i/42

= -3/14 ± √3i/42

∴ The roots of the given equation are -3/14 ± √3i/42

188.

Solve the quadratic equations by factorization method only: 9x2 + 4 = 0

Answer»

Given as 9x2 + 4 = 0

9x2 + 4 × 1 = 0

As we know, i2 = –1 ⇒ 1 = –i2

On substituting 1 = –i2 in the above equation, we get

Therefore,
9x2 + 4(–i2) = 0

9x2 – 4i2 = 0

(3x)2 – (2i)2 = 0

[On using the formula, a2 – b2 = (a + b) (a – b)]

(3x + 2i) (3x – 2i) = 0

3x + 2i = 0 or 3x – 2i = 0

3x = –2i or 3x = 2i

x = -2i/3 or x = 2i/3

Thus, the roots of the given equation are 2i/3, -2i/3

189.

Find the roots of the following quadratic (if they exist) by the method of completing the square.\(4x^2-4ax+4a^2-b^2=0\)

Answer»

We have to make the quadratic equation a perfect square if possible or sum of perfect square with a constant.

(a + b)2 = a2 + 2ab + b2

\(x^2-4ax+4a^2-b^2 = 0\)

⇒ x2 – 2 × 2ax + 4a2 = b2 

⇒ (x – 2a)2 = b2 

⇒ x – 2a = ±b 

⇒ x = 2a + b, 2a – b

190.

Does there exist a quadratic equation whose coefficients are rational but both of its roots are irrational? Justify your answer.

Answer»

x2 – 6x + 7= 0 , which has roots 3 + 2, 3– 2

191.

Some points are plotted on a plane. Each point is joined with all remaining points by line segments. Find the number of points if the number of line segments are 10.

Answer»

Number of distinct line segments that can be formed out of n-points = \(\frac{n(n-1)}{2}\)

Given: No. of line segments 

\(\frac{n(n-1)}{2}\) = 10 

⇒ n2 – n = 20 

⇒ n2 – n – 20 = 0 

⇒ n2 – 5n + 4n – 20 = 0 

⇒ n(n – 5) + 4(n – 5) = 0 

⇒ (n – 5) (n + 4) = 0 

⇒ n – 5 = 0 (or) n + 4 = 0 

⇒ n = 5 (or) -4 

∴ n = 5 [n – can’t be negative]

192.

A two digit number is such that the product of its digits, is 8. When 18 is added to the number, they interchange their places. Determine the number.

Answer»

Let the digit in the units place = x 

Let the digit in the tens place = y 

∴ The number = 10y + x 

By interchanging the digits the number becomes 10x + y 

By problem (10x + y) – (10y + x) = 18 

⇒ 9x – 9y = 18 

⇒ 9(x – y) =18 

⇒ x – y = 18/9 = 2 

⇒ y = x – 2

(i.e.) digit in the tens place = x – 2 

digit in the units place = x 

Product of the digits = (x – 2) x 

By problem x2 – 2x = 8

x2 – 2x – 8 = 0 

⇒ x2 – 4x + 2x – 8 = 0 

⇒ x(x – 4) + 2(x – 4) = 0 

⇒ (x – 4) (x + 2) = 0 

⇒ x – 4 = 0 (or) x + 2 = 0

⇒ x = 4 (or) x = -2 

∴ x = 4 [∵ x can’t be negative] 

∴ The number is 24.

193.

A two-digit number is such that the product of its digits is 8. When 18 is subtracted from the number, the digits interchange their places. Find number.

Answer»

Let the ones digit be ‘a’ and tens digit be ‘b’. 

Given, two-digit number is such that the product of its digits is 8. 

⇒ ab = 8 --- (1) 

Also, when 18 is subtracted from the number, the digits interchange their places 

⇒ 10b + a – 18 = 10a + b 

⇒ 9b – 9a = 18 ⇒ b – a = 2 

⇒ b = 2 + a 

Substituting in 1 

⇒ a × (2 + a) = 8 

⇒ a2 + 2a – 8 = 0 

⇒ a2 + 4a – 2a – 8 = 0 

⇒ a(a + 4) – 2(a + 4) = 0 

⇒ (a – 2)(a + 4) = 0 

⇒ a = 2 

Thus, b = 4 

Number is 42

194.

There are three consecutive integers such that the square of the first increased by the product of the other two gives 154. What are the integers?

Answer»

Let’s consider the three consecutive numbers to be x, x + 1, x + 2 respectively. And x being the first integer of the sequence.

From the question, it’s understood that

x+ (x + 1)(x + 2) = 154

⇒ x+ x+ 3x + 2 = 154

⇒ 2x+ 3x – 152 = 0

Solving for x by factorization method, we have

⇒ 2x+ 19x – 16x – 152 = 0

⇒ x(2x + 19) – 8(2x – 19) = 0

⇒ (2x – 19)(x – 8) = 0

Now, either 2x – 19 = 0 ⇒ x = 19/2 (which is not an integer)

Or, x – 8 = 0 ⇒ x = 8

Hence, considering x = 8 the three consecutive integers are 8, 9 and 10.

195.

The difference of squares of two numbers is 88. If the larger number is 5 less than twice the smaller number, then find the two numbers.

Answer»

Let the numbers be ‘a’ and ‘b’. 

Given, difference of squares of two numbers is 88. 

⇒ a2 – b2 = 88 

Also, the larger number is 5 less than twice the smaller number. 

⇒ a = 2b – 5 Thus, (2b – 5)2 - b2 = 88 

⇒ 4b2 + 25 – 20b - b2 = 88 

⇒ 3b2 – 20b – 63 = 0 

⇒ 3b2 – 27b + 7b – 63 = 0 

⇒ 3b(b – 9) + 7(b – 9) = 0 

⇒ (3b + 7)(b – 9) = 0 

⇒ b = 9 

Thus, a = 2 × 9 – 5 = 13

196.

Find two consecutive odd positive integers, sum of whose squares is 970.

Answer»

Let the consecutive odd positive integers be ‘a’ and a + 2 

⇒ a2 + (a + 2)2 = 970 

⇒ 2a2 + 4a – 966 = 0 

⇒ a2 + 2a – 483 = 0 

⇒ a2 + 23a – 21a – 483 = 0 

⇒ a(a + 23) – 21(a + 23) = 0 

⇒ (a – 21)(a + 23) = 0 

Thus, a = 21 

Consecutive odd positive integers are 21, 23

197.

The difference of squares of two numbers is 180. The square of the smaller number is 8 times the larger number. Find two numbers.

Answer»

Let the numbers be ‘a’ and ‘b’. 

Given, difference of the squares of two numbers is 180. 

⇒ a2 – b2 = 180 

Also, square of the smaller number is 8 times the larger. 

⇒ b2 = 8a 

Thus, a2 – 8a – 180 = 0

⇒ a2 – 18a + 10a – 180 = 0 

⇒ a(a – 18) + 10(a – 18) = 0 

⇒ (a + 10)(a – 18) = 0 

⇒ a = -10, 18 

Thus, the other number is 324 – 180 = b

⇒ b = 12 

Numbers are 12, 18 or -12, 18

198.

The difference of squares of two numbers is 180. The square of the smaller number is 8 times the larger number. Find the two numbers.

Answer»

Let the larger number = x

Then the square of the smaller number = 8 times the larger number = 8x

and the square of the larger number = x2

According to the question,

  x2 - 8x = 180

  =>  x2 - 8x - 180 = 0

  =>  x2 - 18x + 10x - 180 = 0

  =>  x(x - 18) + 10(x - 18) = 0

  =>  (x - 18) (x + 10)  = 0

  =>  x - 18 = 0  or x + 10 = 0

  =>  x = 18  or x = -10

Thus, the larger number = 18 or -10

Then, the square of the smaller number  = 8(18)  or     8(-10)

  = 144       or     -80

The square of a number can't be negative, so, the square of smaller number = 144

Hence, the smaller number = sqrt(144) = 12

The numbers are 12 and 18

199.

Check whether the following are quadratic equation.(x + 1)2 = 2(x - 3)

Answer»

Given: (x + l)2 = 2(x – 3) 

⇒ x2 + 2x + 1 = 2(x – 3) = 2x – 6

⇒ x2 + 2x + l – 2x + 6 = 0 

⇒ x2 + 7 = 0 is a Q.E.

200.

Check whether the following are quadratic equation.(x – 3) (2x + 1) = x(x + 5)

Answer»

Given: (x – 3) (2x + 1) = x(x + 5) 

⇒ x (2x + 1) – 3 (2x + 1) = x . x + 5 . x 

⇒ 2x2 + x – 6x – 3 = x2 + 5x 

⇒ 2x2 – 5x – 3 – x2 – 5x = 0 

⇒ x2 – 10x – 3 = 0 is a Q.E.

(or) 

Comparing the coefficients of x2 on both sides. 

x . 2x and x . x 

⇒ 2x2 and x2 

2x2 ≠ x2 

Hence it’s a Q.E.