Saved Bookmarks
| 1. |
If the roots of the equations ax2 + 2bx + c = 0 and bx2 - 2\(\sqrt{acx}\)+ b = 0 are simultaneously real then prove that b2 = ac |
|
Answer» It is given that the roots of the equations ax2 + 2bx + c = 0 are real. ∴ D1 = (2b)2 - 4 x a x c ≥ 0 ⇒ 4(b2 - ac) ≥ 0 ⇒ b2 - ac ≥ 0.........(i) Also, the roots of the equation bx2 - 2\(\sqrt{acx}\) + b = 0 are equal ∴ D1 = (-2\(\sqrt{ac}\))2 - 4 x b x b ≥ 0 ⇒ 4(ac - b2) ≥ 0 ⇒ -4(b2 - ac) ≥ 0 ⇒ b2 - ac ≥ 0........(2) The roots of the given equations are simultaneously real if (1) and (2) holds true together. This is possible if b2 - ac = 0 ⇒ b2 = ac |
|