1.

If the quadratic equation (1 + m2) x2 + 2mcx + c2 – a2 = 0 has equal roots, prove that c2 = a2 (1 + m2).

Answer»

(1 + m2) x2 + 2mcx + c2 – a2 = 0

Compare given equation with the general form of quadratic equation, which is ax2 + bx + c = 0

a = (1 + m2), b = 2mc and c = c2 – a2

Since roots are equal, so D = 0

(2mc)2 – 4.(1 + m2)(c– a2) = 0

4 m2c2 – 4c2 + 4a2 – 4 m2c2 + 4 m2a2 = 0

a2 + m2a2 = c2

or c2 = a2 (1 + m2)

Hence Proved



Discussion

No Comment Found