1.

Find two consecutive odd positive integers, sum of whose squares is 970.

Answer»

Let the consecutive odd positive integers be ‘a’ and a + 2 

⇒ a2 + (a + 2)2 = 970 

⇒ 2a2 + 4a – 966 = 0 

⇒ a2 + 2a – 483 = 0 

⇒ a2 + 23a – 21a – 483 = 0 

⇒ a(a + 23) – 21(a + 23) = 0 

⇒ (a – 21)(a + 23) = 0 

Thus, a = 21 

Consecutive odd positive integers are 21, 23



Discussion

No Comment Found