1.

Solve the following quadratic equations by factorization method: x2 + 10ix – 21 = 0

Answer»

x2 + 10ix – 21 = 0 

Given x2 + 10ix – 21 = 0 

⇒ x2 + 10ix – 21 × 1 = 0 

We have i2 = –1 

⇒ 1 = –i2 

By substituting 1 = –i2 in the above equation, we get 

x2 + 10ix – 21(–i2) = 0 

⇒ x2 + 10ix + 21i2 = 0 

⇒ x2 + 3ix + 7ix + 21i2 = 0 

⇒ x(x + 3i) + 7i(x + 3i) = 0 

⇒ (x + 3i)(x + 7i) = 0

⇒ x + 3i = 0 or x + 7i = 0 

∴ x = –3i or –7i 

Thus, the roots of the given equation are –3i and –7i.



Discussion

No Comment Found