Saved Bookmarks
| 1. |
If the roots of the equations ax2 + 2bx + c = 0 and \(b\text{x}^2-2\sqrt{ac\text{x}}+b=0\) are simultaneously real, then prove that b2 = ac. |
|
Answer» For a quadratic equation, ax2 + bx + c = 0, D = b2 – 4ac If D ≥ 0, roots are real ax2 + bx + c = 0, ⇒ b2 ≥ ac ------ (1) \(b\text{x}^2-2\sqrt{acx}+b=0\) ⇒ 4ac – 4b2 ≥ 0 ⇒ b2 ≤ ac ----- (2) For both (1) and (2) to be true ⇒ b2 = ac |
|