1.

If the roots of the equations ax2 + 2bx + c = 0 and \(b\text{x}^2-2\sqrt{ac\text{x}}+b=0\) are simultaneously real, then prove that b2 = ac.

Answer»

For a quadratic equation, ax2 + bx + c = 0,

D = b2 – 4ac

If D ≥ 0, roots are real

ax2 + bx + c = 0,

⇒ b2 ≥ ac ------ (1)

\(b\text{x}^2-2\sqrt{acx}+b=0\)

⇒ 4ac – 4b2 ≥ 0 

⇒ b2 ≤ ac ----- (2)

For both (1) and (2) to be true

⇒ b2 = ac



Discussion

No Comment Found