Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

98851.

How many gm of ice at `-20^(@)C` are needed to cool 200 gm of water from `25^(@)C` to `10^(@)C`?A. 20 gmB. 30 gmC. 40 gmD. 50 gm

Answer» Correct Answer - 2
200x 1(25-10)
`mxx1/2 (0-20)+mxx80+mxx1xx(10-0)`
3000=100 m
m=30 gm
98852.

अति लम्बे आवेशित तार के गुर्द q आवेशयुक्त द्रव्यमान m का एक कण r त्रिज्या के वृत्तीय पथ एक एकसमान चाल v से चक्कर लगा रहा है। यदि तार पर आवेश का रैखिक घनत्व (linear dnesity of charge ) `lamda ` हो, तबA. `v prop sqrtq`B. `v prop sqrtlamda`C. `v prop (1)/(sqrtm)`D. `v prop r^(@)`

Answer» Correct Answer - A::B::C::D
वृत्तीय गति में, `F=(mv^(2))/(r)=qE=q(lamda)/(2piin_(0)r)` या `v^(2)=(qlamda)/(2piin_(0)m)`
98853.

Do you happen _____ when Kennedy was assassinated? A) knowing B) to know C) to have known D) knew

Answer»

Correct option is B) to know

to know 


Is a right answer


98854.

Express 225 as the sum of 15 on number.

Answer»

225 = 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21 + 23 + 25 + 27 + 29

This can easy be find that given x2 ,we can analyse that first x odd numbers sum is 225 .

98855.

1 - cos x=

Answer» we know \( \sin^2 x=\frac{1-\cos 2x}{2} \). so we have:

\( \int \sin^2 x \; \mathrm{d}x=\int \frac{1-\cos 2x}{2} \; \mathrm{d}x=\int \frac{1}{2} \; \mathrm{d}x-\int \frac{\cos 2x}{2} \; \mathrm{d}x \)

\( \int \sin^2 x \; \mathrm{d}x=\frac{1}{2}x-\frac{1}{4}\sin 2x+c \)
98856.

|x2 + x| - 5 < 0.

Answer»

\(|x^2 +x |-5 < 0\)

\(|x (x + 1)| - 5 < 0\)

Case I: \(x \le 0\)

Then

\(x(x + 1)> 0\)

⇒ \(|x (x + 1)| = x(x +1)\)

⇒ \(|x^2 + x| - 5 < 0\)

⇒ \(x^2 + x - 5 < 0\)

⇒ \(\frac{-1-\sqrt{21}}{2}< x< \frac{-1 + \sqrt{21}}{2}\)

But \(x\le -1\)

\(\therefore x \in \left(\frac{-1-\sqrt{21}}{2}, -1\right]\)    .....(1)

Case II: \(- 1 < x \le 0\)

Then

\(x(x + 1)< 0\)

⇒ \(|x^2 + x| = -(x^2 +1)\)

⇒ \(|x^2 + x|-5 < 0\)

⇒ \(- (x^2 + x) - 5 < 0\)

⇒ \(x^2 + x + 5 > 0\)

⇒ \(x\in R\)

Hence, \(x \in ( -1 , 0]\)     .....(2)

Case III: x > 0

Then

 \(x(x + 1)> 0\)

⇒ \(|x^2 + x| = x^2 +x\)

\(\therefore |x^2 + x| - 5 < 0\)

⇒ \(x^2 +x - 5 < 0\)

⇒ \(\frac{-1 - \sqrt{21}}{2} < x < \frac{-1 + \sqrt{21}}{2}\)

But \(x > 0\)

\(\therefore x \in \left(0,\frac{-1+\sqrt{21}}{2}\right)\)    ....(3)

From (1), (2) & (3), we get 

\(x \in \left(\frac{-1-\sqrt{21}}{2},\frac{-1 + \sqrt{21}}{2}\right)\)

98857.

What is the integretion of sin²x.sinx dx?

Answer»

\(\int sin^2x \;sin\,x \,dx\)

\(= \int (1 -cos^2x)sin\,x\, dx\)

\(= \int sin \,x\,dx - \int cos^2 x\; sin x \,dx\)

\(= -cos\, x + \frac{cos^3x}{3} +C\)    (By taking cos x = t ⇒ -sin x dx = dt)

98858.

\( \int \frac{x-1}{\sqrt{x^{2}+1}} d x \)

Answer»
(√1+x²) - tan-¹x +c

\(\int \frac{x - 1}{\sqrt{x^2 + 1}}dx = \int\frac{x}{\sqrt{x^2 + 1}}dx - \int\frac{1}{\sqrt{x^2 + 1}}dx\)

Let \(x^2 + 1 = t^2\)

Then 

\(2x \,dx = 2t \,dt\)

⇒ \(x\,dx = t\,dt\)

\(\therefore \int \frac{x - 1}{\sqrt{x^2 + 1}}dx = \int \frac{t\,dt}t - log\left|x + \sqrt{x^2 +1}\right|+ C\)

\(= t - log \left|x + \sqrt{x^2 + 1}\right| + C\)

\(= \sqrt{x^2 + 1} - log \left|x + \sqrt{x^2 + 1}\right| + C\)

98859.

\( \int \frac{x-1}{\sqrt{x^{2}+1}} d x \)

Answer»

 \(\int \frac{x - 1}{\sqrt{x^2 + 1}}dx = \int\frac{x}{\sqrt{x^2 + 1}}dx - \int\frac{1}{\sqrt{x^2 + 1}}dx\)

Let \(x^2 + 1 = t^2\)

Then 

\(2x \,dx = 2t \,dt\)

⇒ \(x\,dx = t\,dt\)

\(\therefore \int \frac{x - 1}{\sqrt{x^2 + 1}}dx = \int \frac{t\,dt}t - log\left|x + \sqrt{x^2 +1}\right|+ C\)

\(= t - log \left|x + \sqrt{x^2 + 1}\right| + C\)

\(= \sqrt{x^2 + 1} - log \left|x + \sqrt{x^2 + 1}\right| + C\)

98860.

Consider the follawing species\( O \left( CH _{3}\right)_{2}, N \left( SiH _{3}\right)_{3}, CO , O \left( SiH _{3}\right)_{2},: CCl _{2}(\sin g l e t), CCl _{3}, Si ( OH )_{4}, OCl _{2} \) and \( MeNCS \).If \( x \) is the total no of species having \( ( P \pi- P \pi) \) back bonding, \( y \) is the no. of species having \( P \pi- d \pi \) back bonding and \( z \) is the no of species having no back bonding then find the value of \( (x+y-z) \) ?

Answer»
padh Liya Kar na class me



98861.

\(\int\frac{x+1}{x(1+xe^x)^2}dx\)

Answer»

Let \(1 + xe^x = t\)

Then

\((xe^x + e^x)dx = dt\)

⇒ \(e^x (x + 1)dx = dt\)

⇒ \((x + 1) dx = \frac{dt}{e^x}\)

\(\therefore \frac{(x + 1)dx}{x} = \frac{dt}{xe^x} = \frac{dt}{t -1}\)

\(\therefore \int \frac{(x + 1) dx}{x(1 + xe^x)^2} = \int \frac{dt}{(t - 1)t^2}\)

\(= \int \left(\frac{-1}{t} - \frac1{t^2} + \frac1{t -1}\right)dt\)

\( = -log\, t + \frac1 t + log(t - 1) + C\)

\(= log\left|\frac{t-1}{t}\right| + \frac1t + C\)

\(= log\left|\frac{xe^x}{xe^x + 1}\right| + \frac1{xe^x + 1} + C\)

98862.

The complete solution of the ordinary differential equation \(\frac{{{d^2}y}}{{d{x^2}}} + p\frac{{dy}}{{dx}} + qy = 0\) is:\(y = {c_1}{e^{ - x}} + {c_2}{e^{ - 3x}}\)Then p and q are:1. p = 3, q = 32. p = 3, q = 43. p = 4, q = 34. p = 4, q = 4

Answer» Correct Answer - Option 3 : p = 4, q = 3

Concept:

For a second-order differential function, the characteristic equation will have two roots D1 and D2. The roots can have three possible forms i.e.

  • Real, distinct roots, D1 ≠ D2
  • Complex roots, D1, D2 = a ± ib
  • Double roots D1 = D2 = 0

 

The solution for the second-order differential equation with equal roots of the characteristic equation is given by:

\(y = \left( {{c_1} + {c_2}x} \right){e^{{D_1x}}}\)

If two roots are real and distinct (i.e. D1 ≠ D2), the general solution will be:

\(y = {C_1}{e^{{D_1}x}} + {C_2}{e^{{D_2}x}}\)

If the roots of the characteristic equation are complex (i.e. D1, 2 = a ± ib), the general solution to the differential equation will be:

\(y = {C_1}{e^{ax}}\cos \left( {bx} \right) + {C_2}{e^{ax}}\sin \left( {bx} \right)\)

Calculation:

Given \(\frac{{{d^2}y}}{{d{x^2}}} + p\frac{{dy}}{{dx}} + qy = 0\) 

The given solution is:

\(y = {c_1}{e^{ - x}} + {c_2}{e^{ - 3x}}\)    ---(1)

The general solution of differential equation with unequal roots is given by:

\(y = {c_1}{e^{mx}} + {c_2}{e^{nx}}\)    ---(2)

Here m and n are the roots of ordinary differential equation

Comparing equation (1) and (2), we get:

m = -1 and n = -3

Sum of roots will be:

m + n = -p

-1 – 3 = -p

p = 4

And product of roots is mn = q, i.e.

(-1)(-3) = q

q = 3
98863.

Solve (D^2 +D+1)y=xe^(2x)cos(3x)

Answer»

It's auxiliary equation is m2 + m + 1 = 0

⇒ \(m = \frac{-1\pm \sqrt{1-4}}{2}= \frac{-1\pm\sqrt3 C}{2}\)

\(C.F. = e^{-\frac x2} \left(C_1 cos\left(\frac{\sqrt3}2x\right)+ C_2sin\left(\frac{\sqrt3}2x\right)\right)\)

\(P.I. = \frac1{D^2 + D + 1}xe^{2x}cos 3x \)

\(= e^{2x} \frac1{(D + 2)^2 + (D + 2) + 1}x \,cos 3x\)

\(= e^{2x} \frac1{D^2 + 5D + 7}x\, cos3x\)

\(= e^{2x} \left(x\frac1{D^2 + 5D + 7}cos 3x + \frac{-(2D + 5)}{(D^2 + 5D + 7)^2}cos3x\right)\)

\(= e^{2x} \left(x\frac{1}{-9 + 5D + 7}cos3x - \frac{2D + 5}{(-9 + 5D + 7)^2}cos 3x\right)\)

\(= e^{2x}\left(x\frac{5D+2}{25D^2 -4}cos3x- \frac{(2D+5)}{25D^2 - 20D + 4}cos3x\right)\)

\(= e^{2x}\left(x\frac{5D \, cos3x + 2cos3x}{-25 \times 9 - 4}+ \frac{(2D + 5)(20D - 221)}{400D^2- 48841}cos 3x\right)\)

\(= e^{2x}\left(\frac{-x}{229}(-15 sin3x + 2cos 3x) - \frac{1}{52441}(40D^2 - 342D - 1105)cos3x\right)\)

\(= e^2x\left(\frac{-x}{229} (-15 sin3x + 2 cos 3x) - \frac1{52441} (-360cos3x + 1026 sin3x - 1105 cos 3x)\right)\)

\(= e^{2x} \left(\frac x{229} (15sin3x - 2 cos 3x) + \frac1{52441} (1465 cos3x - 1026 sin 3x)\right)\)

y = C.F. + P.I is solution of given differential equation.

98864.

X^2 d^2/dx^2+ x dy/dx - y = x^2 + 1

Answer»

Let x = ez

\(\therefore x \frac{dy}{dx} = Dy\)where \(D = \frac d{dz}\)

\(x^2\frac{d^2y}{dx^2} = D(D - 1)y\), where \(D = \frac d{dz}\) 

∴ Given differential equation converts into 

D(D - 1)y + Dy - y = e2z + 1

It's auxiliary equation is 

m(m - 1) + m - 1 = 0

⇒ m2 - 1 = 0

⇒ m = \(\pm \)1

∴ \(C.F. = C_1e^z + C_2e^{-z} = C_1x + \frac{C_2}x\)  (∵ \(e^z = x\))

\(P.I. = \frac1{D^2 - 1} (e^{2z} + 1)\)

\(= \frac1{D^2 - 1}e^{2z} + \frac1{D^2 - 1}e^{0z}\)

\(= \frac{e^{2z}}{4 - 1} + \frac{e^{0z}}{0 - 1}\)

\(= \frac{e^{2z}}{3} + \frac1{-1}\)

\(= \frac{e^{2z}}{3} - 1\)

\(= \frac{x^2}{3} - 1\)  (∵ \(e^z = x\))

∴ \(y = C.F. + P.I.\)

\(= C_1x+ \frac{C_2}x + \frac{x^2}3 - 1\)

which is complete solution of given differential equation.

98865.

\( \int \frac{1-\sin x}{\cos x} d x \) equals

Answer»

1-Sinx = sin²x/2 + cos²x/2 -2sinx/2cosx/2 = ( cosx/2 - sinx/2  )²

cosx = cos²x/2 - sin²x/2 = ( cosx/2 - sinx/2 )(cosx/2 + sinx/2 )

then put this values in given integration and substitute  t = cosx/2 + sinx/2  

it reduces in simple integration.


98866.

24. A continuous function \( f: R \rightarrow R \) satisfy the differential equation \( f(x)=\left(1+x^{2}\right) \) \( \left[1+\int_{0}^{x} \frac{f^{2}(t)}{1+t^{2}} d t\right] \) then the value of \( f(-2) \) is :(a) 0(b) \( \frac{17}{15} \)(c) \( \frac{-17}{15} \)(d) \( \frac{15}{17} \)

Answer»

differentiate wrt x 

 f'(x)=(2xf(x)/1+x^2 )+f^2(x)

f(x)=-3(x^2+1)/x^3+3x+c

98867.

Let \( f:(0,2) \rightarrow R \) be a function which is continuous on \( [0,2] \) and is differentiable on \( (0,2) \) with \( f(0)=1 \). Let \( F(x)=\int_{0}^{x^{2}} f(\sqrt{t}) d t \) for \( x \in[0,2] \). If \( F^{\prime}(x)=f^{\prime}(x) \) for all \( x \in(0,2) \), then \( F(2) \) equals(2014)

Answer»

F(x) = 0→x²​​​​​f(√t)dt

F'(x) = f(x)\(d \over dx\)(x²) - f(0)\(d \over dx\)(0)

F'(x) = f(x).2x

f'(x) = f(x).2x          ....[ F'(x) =f'(x) ]

\(f'(x) \over f(x)\) = 2x

\(∫{ f'(x) \over f(x)}\)\(dx\) = \(∫ 2x dx\)

log(f(x)) = x² + C

f(x) = (\(e ^x\))².\(e^c\)

1 = \(e^0\).Q  → Q = 1

f(x) = \((e^x)^2\)

Now,

F(x) = 0 → x² \(∫e^t dt\)

F(x) = \((e^x)²\) - \(e^0\) = \((e^x)² - 1\)

F(2) = \(e^4 -1\)

98868.

In the circuit shown in the figure .A. current passing through `2Omega` resistance is zero.B. current passing through `4Omega` resistance is `5A`C. current passing through `5Omega` resistance is 4A.D. potential difference across `2Omega` resistance is zero.

Answer» Correct Answer - A::B::C::D
a., b., c., d.
`2Omega` resistance will be short-circuited as potential drop across
it is 0 also `4Omega` and `5Omega` are in parallel.
`1/R = (4+5)/(4xx5) = 9/20`
`I = 20/20 xx 9 = 9A rArr I_1 xx 4 = (9-I_1) xx 5`
`I_1 = 5A, I-I_1 = 4A` .
98869.

A variable current flows through a `1Omega` resistor for 2 s. Time dependence of the current is shown in the graph. A. Total charge flowing through the resistor is 10C.B. Average current through the resistor is 5 A.C. Total heat produced in the resistor is 50J.D. Maximum power during the flow of current is 100 W.

Answer» Correct Answer - A::B::D
a., b., d.
"Total charge" `= int I dt ` = "Area under the curve" = `10 C`.
"Average current" `= (int I dt)/(int dt) = 5A`
"Total heat produced" `= (int I^2 dt)`
`= int_(0)^(2) (-5t + 10)^2 1dt = 200/3J`
"Maximum power" = `I^2R` "when I is maximum current"
`= 100 xx 1 = 100W`.
98870.

(a) Find the centre and radius of the circle whose equation is(i) \( (x-2)^{2}+(y+3)^{2}=9 \)(ii) \( 2 x^{2}+2 y^{2}-6 x+10 y=1 \) (iii) \( x^{2}+y^{2}+8 x-2 y+13=0 \) (b) (i) Find the Cartesian equation of the curve \( \frac{2}{r}=1+\cos \theta \) (ii) Find the polar equation of \( x^{2}+y^{2}=9 \) (c) (i) Find the equation of a straight line which passes through the two points \( (-2,3) \) and \( (2,-5) \) (ii) Find the equation of the tangent to the circle \( x^{2}+y^{2}+2 x+4 y-3=0 \) at the point \( (1,-4) \)

Answer»

(a) (i) Given equation of circle is

(x - 2)2 + (y + 3)2 = 9

⇒ (x - 2)2 + y(-(-3))2 = 32

\(\therefore\) Centre of circle is (2, -3) and radius of the circle is 3.(But comparing the standard form of circle whose centre is (h, k) and radius is r; i.e; (x - h)2 + (y - k)2 = r2)

(ii) Given equation of circle is

2x2 + 2y2 - 6x + 10y = 1

⇒ x2 + y2 - 3x + 5y = 1/2 (Dividing both sides by 2)

Compare with x2 + y2 + 2fx + 2gy + c = 0

we get 2f = -3 ⇒ f = -3/2

2g = 5 ⇒ g = 5/2

& c = -1/2

\(\therefore\) Centre of the circle = (-f, -g) = (3/2, -5/2)

and radius of the circle is r = \(\sqrt{f^2+g^2-c}\) 

⇒ r = \(\sqrt{(\frac{-3}2)^2+(5/2)^2-(-1/2)}\)

 = \(\sqrt{\frac94+\frac{25}4+\frac12}\) 

 = \(\sqrt\frac{9+25+2}4\) = \(\sqrt\frac{36}4=\sqrt9\) = 3

\(\therefore\) Radius of the circle is r = 3

& centre of the circle is(-3/2, 5/2)

(iii) Given equation of circle is 

x2 + y2 + 8x - 2y + 13 = 0

⇒ x2 + 8x + 16 - 16 + y2 - 2y + 1 - 1 + 13 = 0

⇒ (x + 4)2 + (y - 1)2 + 13 - 17 = 0

⇒ (x - (-4))2 + (y - 1)2 = 22

\(\therefore\) Centre of the circle is(-4, 1)

and radius of the circle is r = 2

(b)(i) Polar equationo of the curve is

\(\frac2r=1+cos\theta\)----(1)

\(\because\) x = r cos θ and y = r sin θ

\(\therefore\) cos θ = x/r

Then equation(1) converts into

2/r = 1 + x/r

⇒ 2 = x + r

⇒ 2 - x = r

⇒ r2 = (2 - x)2

x2 + y2 = x2 - 4x + 4 (\(\because\) r2 = x2 + y2)

⇒ y2 = -4x + 4 which is a cartesian equation of the given curve.

(ii) Given cartesian equation of the curve is

x2 + y2 = 9

⇒ r2 = 9 (\(\because\) x2 + y2 = r2)

⇒ r = 3

(c) (i) Equation of line which passes through two points (-2, 3) & (2, -5) is

\(y-y_1=\frac{y_2-y_1}{x_2-x_1}(x-x_1)\)

⇒ y - 3 = \(\frac{-5-3}{2-(-2)}(x - (-2))\) 

⇒ 2x + y + 1 = 0 which is equation of required line.

(ii) Given equation of curve is

x2 + y2 + 2x + 4y - 3 = 0----(1)

By diferentiating equation (1) w.r.t. x

we get

2x + 2y dy/dx + 2 + 4 dy/dx = 0

⇒ (2y + 4)dy/dx = -(2x + 2)

⇒ dy/dx = \(\frac{-(2x+2)}{2y+4} = \frac{-(x+1)}{y+2}\)

\(\therefore\) slope of tangent to curve (1) at point (1, -4) is

m = (dy/dx)(1, -4) = \(\frac{-(1+1)}{-(4+2)}=\frac{-2}{-2}=1\)

\(\therefore\) Equation of tangent to curve (1) at point (1, -4) is y-(-4) = m(x - 1)

⇒ y + 4 = 1(x - 1)

⇒ x - y = 5

which is equation of tangent to given curve at point(1, - 4)

98871.

Write dimensional formula of mass and speed.

Answer» Dimensional formula of mass is `|M^(1)L^(0)T^(0)|` and that of speed (=distance/time) is `|M^(0)L^(1)T^(-1)|`
98872.

Three coplanar vectrors `vec(A), vec(B)` and `vec(C)` have magnitudes `4, 3` and `2` respectively. If the angle any two vector is `120^(@)` then which of the following vector may be equal to `(3vec(A))/4+vec(B)/3+vec(C)/2` A. B. C. D.

Answer» Correct Answer - B
As `|vec(B)/3|=|vec(C)/2|` so `vec(B)/3+vec(C)/2=-vec(A)/4` therefore `(3vec(A))/4+vec(B)/3+vec(C)/2=vec(A)/2`
98873.

Correct mark of the focal point isi) A ii) B iii) C iv) D

Answer»

The correct option is (ii) B.

98874.

Find the `SI` unit of (i) area, (ii) density, and (iii) momentum.

Answer» (i) `m^(2)` (ii) `kg//m^(3)` (iii) kgm//s`.
98875.

In a certain region of space a uniform electric field has a magnitude of 4.6x10⁴N/C and point in the positive x - direction. Find the magnitude of the force exerted on a charge i. +2.80NC ii. -9.30 NC

Answer»
Apply the formula:- Force applied in a charge in a electric field= charge × electric field magnitude 
98876.

An electron and a proton are separated by a large distance. The electron starts approaching the proton with energy \( 2 eV \). The proton captures the electron and forms a hydrogen atom in first excited state. The resulting photon is incident on a photosensitive metal of threshold wavelength \( 4600 A \). The maximum KE of the emitted photoelectron is (take, \( h c=12420 eV A \) ).

Answer»

Intial Energy = 2 + 0 = 2 ev

Final energy = \(\frac{13.6\times1}1\)

2 = -13.6 + Ep

Ep = 15.6 ev

ɸ = \(\frac{12420}{4600}\)

ɸ = 2.7

then 

E = hv - ɸ

E = 15.6 - 2.7

E = 12.9 ev

98877.

Find the sum of given Arithmetic Progression `4+8+ 12+....+ 64`A. 464B. 540C. 544D. 646

Answer» Correct Answer - 3
Here a=4, d =4, n=16 So, = `(n)/(2)` [First term + last term]= `(16)/(2)[4+ 64]= 8(68)= 544`
98878.

Find sum of first n natural numbers.

Answer» Let sum be `S_(n)` then `S_(n)=1+2+3+....+n,=(n)/(2)[2+n]=[(n(n+1))/(2)]`
98879.

Three vector `vec(A)`,`vec(B)`, `vec(C )` satisfy the relation `vec(A)*vec(B)=0`and `vec(A).vec(C )=0`. The vector `vec(A)` is parallel toA. `vec(B)`B. `vec(C)`C. `vec(B). vec(C)`D. `vec(B)xxvec(C)`

Answer» Correct Answer - D
`vec(A).vec(B)=0rArr vec(A)bot vec(B)` & `vec(A).vec(C)=0rArrvec(A) bot vec(C)`
But `vec(B)xxvec(C)` is perpendicular to both `vec(B)` and `vec(C)` so `vec(A)` is parallel to `vec(B)xxvec(C)`
98880.

The mass m of a body moving with a velocity v is given by `m=m_(0)/sqrt(1-v^(2)/c^(2))` where `m_(0)` = rest mass of body `=10 kg` and c = speed of light `=3xx10^(8) m//s`. Find the value of m at `v=3xx10^(7) m//s`

Answer» `m = m_(0) (1-(v^(2))/(c^(2)))^(-1//2) = 10 [1- ((3xx10^(7))/(3xx10^(8)))^(2)]^(-1//2) = 10 [ 1-(1)/(100)]^(-1//2) ~~ 10 [1- (-(1)/(2))((1)/(100))]=10 + (10)/(200) ~~ 10.05 ` kg
98881.

The electron in a given Bohr orbit has a total energy of \( -1.5 eV \). Calculate its (i) Kinetic energy. (ii) potential energy. (iii) Wavelength of radiation emitted, when this electron makes a transition to the ground state. [Given : Energy in the ground state \( =-13.6 eV \) and Rydberg's constant \( =1.09 \times 10^{7} m ^{1} \) ]

Answer»

Given E = 1.5 ev

(i) Kinetic energy of electron

K.E. = -E

K.E. = -5(-1.5 ev)

K. E. = 1.5 ev

(ii) Potential energy of electron

P.E. = -2 K.E.

P.E. = -2 x 1.5

P.E. = -3.0 ev

(iii) Energy of photon \(\Delta\)E = E2 - E1

\(\Delta\)E = -1.5 - (-13.6)

\(\Delta\)E = 12.1 ev

\(\Delta\)E = 12.1 x 1.6 x 10-19 J

\(\Delta\)E = 19.36 x 10-19 J

Energy of photon

\(\Delta\)E = \(\frac{hc}\lambda\)

\(\frac{hc}\lambda\) = 19.36 x 10-19

Wavelength of radiation \(\lambda\) = \(\frac{6.6\times10^{-34}\times3\times10^8}{19.36\times10^{-19}}\)

\(\lambda=1.022\times10^{-7}\) m

98882.

The magnetitude of pairs of displacement vectors are given. Which pairs of displacement vector cannot be added to give a resultant vector of magnitude `13` cm?A. `4 cm, 16 cm`B. `20 cm, 7 cm`C. `1 cm, 15 cm`D. `6 cm, 8 cm`

Answer» Correct Answer - C
Resultant of two vector `vec(A)` and `vec(B)` must satisty `A~B le R le A+B`
98883.

Assertion: If position vector is given by `hatr=sinhati+costhatj-7thatk`, then magnitude of acceleration `|veca|=1` Reason: The angles which the vector `vecA=A_(1)veci+A_(3)hatk` makes with the co-ordinate asex are given by `cos alpha=(A_(1))/(A), cos beta=(A_(2))/(A)& cos gamma=(A_(3))/(A)`.A. If both Assertion `&` Reason are True `&` the Reason is a correct explanation of the Assertion.B. If both Assertion `&` Reason are True but Reason is not a correct explanation of the Assertion.C. If Assertion is True but the Reason is False.D. If both Assertion `&` Reason are false.

Answer» Correct Answer - B
`vecr=(sin t)hati+(cos t)hatj-7 thatk`
`vecv=-(dvecr)/(dt)=cos t hati-sin t hatj-7 hatk`
`veca=(dvecv)/(dt)=-sin tveci-cos t hat j`
`|veca|=sqrt(sin^(2) t+cos^(2)t)=1`
98884.

A force is inclined at an angle of `60^(@)` from the horizontal. If the horizontal component of the force is 40N. Calculate the vertical component.

Answer» Resultant `vecR=vecP+vecQ=(2hati+7hatj-10hatk)+(hati+2hatj+3hatk)=3hati+9hatj-7hatk`
But `vecR+
98885.

Assertion: The angle between the two vectors `(hati+hatj)` and `(hatj_hatk)` is `(pi)/(3)` radian. Reason: Angle between two vectors `vecA` and `vecB` is given by `theta=cos^(-1)((vecA.vecB)/(AB))`A. If both Assertion `&` Reason are True `&` the Reason is a correct explanation of the Assertion.B. If both Assertion `&` Reason are True but Reason is not a correct explanation of the Assertion.C. If Assertion is True but the Reason is False.D. If both Assertion `&` Reason are false.

Answer» Correct Answer - A
`cos theta=(vecA.vecB)/(AB)=((hati+hatj).(hatj+hatk))/((sqrt(2))(sqrt(2)))=(1)/(2)`
98886.

The magnetitude of pairs of displacement vectors are given. Which pairs of displacement vector cannot be added to give a resultant vector of magnitude `13` cm?A. 4cm, 16cmB. 20cm, 7cmC. 1cm, 15cmD. 6cm, 8cm

Answer» Correct Answer - C
Resultant of two vector `vecA` and `vecB` must satisfy `A-BleRleA+B`
98887.

Assertion : The direction of a zero (null) vector is indeteminate. Reason : We can have `vecAxx vecB = vecA *vecB` with `vecA ne vec0 and vecB ne vec0`.A. If both Assertion `&` Reason are True `&` the Reason is a correct explanation of the Assertion.B. If both Assertion `&` Reason are True but Reason is not a correct explanation of the Assertion.C. If Assertion is True but the Reason is False.D. If both Assertion `&` Reason are false.

Answer» Correct Answer - C
`A=sqrt(A_(x^(2))+A_(y^(2)))=sqrt((24)^(2)+(7)^(2))=25`
`|vecAxxvecB|^(2)+|vecA.vecB|^(2)=AB(sin^(2)theta+cos^(2)theta)=AB`
as `A=B=1rArr|vecAxxvecB|^(2)+|vecA.vecB|^(2)=1`
98888.

Determine that vector which when added to the resultant of `vecP=2hati+7hatj-10hatk` and `vecQ=hati+2hatj+3hatk` gives a unit vector along X-axis.

Answer» Resultant `vecR=vecP+vecQ=(2hati+7hatj-10hatk)+(hati+2hatj+3hatk)=3hati+9hatj-7hatk`
But `vecR+"required vector"=hati` or required vector `=hati=vecR=hati-(3i+9hatj-7hatk)=-2hati-9hatj+7hatk`
98889.

A rope, under tension of `200N` and fixed at both ends, oscialltes in a second harmonic standing wave pattern. The displacement of the rope is given by `y=(0.10)sin ((pix)/(3)) sin (12 pit)`, where `x=0` at one end of the rope, `x` is in metres and `t` is in seconds. Find the length of the rope in metres.

Answer» `y=0.10sin ((pix)/(3))sin (12 pit)`
`[M. Bank_(-)S.W._(-)4.60]`
`k=(pi)/(3)`
`rArr lambda=6m`
Length of the rope `=lambda=6m`.
98890.

A m-RNA is formed in(A) Ribosome (B) Nucleus (C) Mitochondria (D) Cytoplasm

Answer»

Correct option is: (B) Nucleus

98891.

Replication of DNA occurs(A) 3’ → 5’ direction(B) 5’ → 3’ direction(C) Both 3’ → 5’ and 5’ → 3’ direction(D) None of these

Answer»

Correct option is: (B) 5’ → 3’ direction

98892.

DNA is methylated at ?(A) A-residue (B) T-residue (C) C-residue (D) Both (A) and (C)

Answer»

Correct option is: (C) C-residue

98893.

Which of the following is an opiate narcotic ? (A) LSD (B) Morphine (C) Stimulants (D) Tobacco

Answer»

Correct option is: (B) Morphine

98894.

Which of the following plant is used for the purification of water ? (A) Spirogyra (B) Chlorella (C) Eichhornia (D) Beggiatoa

Answer»

Correct option is: (C) Eichhornia

98895.

CO is more toxic than CO2 because(A) It damages lungs (B) It forms acid with water (C) It affects the nervous system (D) It reduces the oxygen carrying capacity of haemoglobin

Answer»

Correct option is: (D) It reduces the oxygen carrying capacity of haemoglobin

98896.

Which of the following is biodegradable pollutant ? (A) Polythene (B) DDT (C) Plastic (D) Sewage

Answer»

Correct option is: (D) Sewage

98897.

Noise pollution is created if noise is in excess to(A) 50-60 dB (B) 70-75 dB (C) 40-65 dB (D) 80-99 dB

Answer»

Correct option is: (D) 80-99 dB

98898.

Which of the following attributes of the membrane is most affected at the transition temperature?(a) size(b) fluidity(c) internal composition(d) internal environment

Answer» The correct choice is (b) fluidity

The explanation: At the transition temperature, the bilayer distinctly changes from liquid crystalline phase to crystalline gel. This occurs when the temperature is lowered from a standard warm temperature of 37⁰C.
98899.

What is the maximum wavelength of light photosystem II can absorb?(a) 680nm(b) 450nm(c) 700nm(d) 230nm

Answer» The correct answer is (a) 680nm

Best explanation: Photosystem II primary donor or P680 is a complex of many pigments which has the potentiality to absorb maximum light at 680nm. It is also known to be the strongest biological oxidizing agent.
98900.

The segregation of alleles on one trait did not have any effect on the segregation of alleles on a different trait. This is based on ____________(a) Mendel’s law of Heredity(b) Mendel’s law of Dominance(c) Mendel’s law of Independent Assortment(d) Mendel’s law of Segregation

Answer» Right choice is (c) Mendel’s law of Independent Assortment

The explanation is: There are three Mendel’s laws n Heredity. 1. The Mendel’s law of Dominance states that when a dominant individual is crossed with a recessive individual, the F1 generation offspring will exhibit the dominant trait. 2. According to Mendel’s law of Segregation, a pair of allele governing a single trait segregates from each other during the formation of gametes. 3. According to Mendel’s law of Independent Assortment, the segregation of alleles on one trait did not have any effect on the segregation of alleles on a different trait.