1.

The electron in a given Bohr orbit has a total energy of \( -1.5 eV \). Calculate its (i) Kinetic energy. (ii) potential energy. (iii) Wavelength of radiation emitted, when this electron makes a transition to the ground state. [Given : Energy in the ground state \( =-13.6 eV \) and Rydberg's constant \( =1.09 \times 10^{7} m ^{1} \) ]

Answer»

Given E = 1.5 ev

(i) Kinetic energy of electron

K.E. = -E

K.E. = -5(-1.5 ev)

K. E. = 1.5 ev

(ii) Potential energy of electron

P.E. = -2 K.E.

P.E. = -2 x 1.5

P.E. = -3.0 ev

(iii) Energy of photon \(\Delta\)E = E2 - E1

\(\Delta\)E = -1.5 - (-13.6)

\(\Delta\)E = 12.1 ev

\(\Delta\)E = 12.1 x 1.6 x 10-19 J

\(\Delta\)E = 19.36 x 10-19 J

Energy of photon

\(\Delta\)E = \(\frac{hc}\lambda\)

\(\frac{hc}\lambda\) = 19.36 x 10-19

Wavelength of radiation \(\lambda\) = \(\frac{6.6\times10^{-34}\times3\times10^8}{19.36\times10^{-19}}\)

\(\lambda=1.022\times10^{-7}\) m



Discussion

No Comment Found

Related InterviewSolutions