Saved Bookmarks
| 1. |
Let \( f:(0,2) \rightarrow R \) be a function which is continuous on \( [0,2] \) and is differentiable on \( (0,2) \) with \( f(0)=1 \). Let \( F(x)=\int_{0}^{x^{2}} f(\sqrt{t}) d t \) for \( x \in[0,2] \). If \( F^{\prime}(x)=f^{\prime}(x) \) for all \( x \in(0,2) \), then \( F(2) \) equals(2014) |
Answer»
|
|