| 1. |
|x2 + x| - 5 < 0. |
|
Answer» \(|x^2 +x |-5 < 0\) ⇒ \(|x (x + 1)| - 5 < 0\) Case I: \(x \le 0\) Then \(x(x + 1)> 0\) ⇒ \(|x (x + 1)| = x(x +1)\) ⇒ \(|x^2 + x| - 5 < 0\) ⇒ \(x^2 + x - 5 < 0\) ⇒ \(\frac{-1-\sqrt{21}}{2}< x< \frac{-1 + \sqrt{21}}{2}\) But \(x\le -1\) \(\therefore x \in \left(\frac{-1-\sqrt{21}}{2}, -1\right]\) .....(1) Case II: \(- 1 < x \le 0\) Then \(x(x + 1)< 0\) ⇒ \(|x^2 + x| = -(x^2 +1)\) ⇒ \(|x^2 + x|-5 < 0\) ⇒ \(- (x^2 + x) - 5 < 0\) ⇒ \(x^2 + x + 5 > 0\) ⇒ \(x\in R\) Hence, \(x \in ( -1 , 0]\) .....(2) Case III: x > 0 Then \(x(x + 1)> 0\) ⇒ \(|x^2 + x| = x^2 +x\) \(\therefore |x^2 + x| - 5 < 0\) ⇒ \(x^2 +x - 5 < 0\) ⇒ \(\frac{-1 - \sqrt{21}}{2} < x < \frac{-1 + \sqrt{21}}{2}\) But \(x > 0\) \(\therefore x \in \left(0,\frac{-1+\sqrt{21}}{2}\right)\) ....(3) From (1), (2) & (3), we get \(x \in \left(\frac{-1-\sqrt{21}}{2},\frac{-1 + \sqrt{21}}{2}\right)\) |
|