1.

24. A continuous function \( f: R \rightarrow R \) satisfy the differential equation \( f(x)=\left(1+x^{2}\right) \) \( \left[1+\int_{0}^{x} \frac{f^{2}(t)}{1+t^{2}} d t\right] \) then the value of \( f(-2) \) is :(a) 0(b) \( \frac{17}{15} \)(c) \( \frac{-17}{15} \)(d) \( \frac{15}{17} \)

Answer»

differentiate wrt x 

 f'(x)=(2xf(x)/1+x^2 )+f^2(x)

f(x)=-3(x^2+1)/x^3+3x+c



Discussion

No Comment Found

Related InterviewSolutions