1.

X^2 d^2/dx^2+ x dy/dx - y = x^2 + 1

Answer»

Let x = ez

\(\therefore x \frac{dy}{dx} = Dy\)where \(D = \frac d{dz}\)

\(x^2\frac{d^2y}{dx^2} = D(D - 1)y\), where \(D = \frac d{dz}\) 

∴ Given differential equation converts into 

D(D - 1)y + Dy - y = e2z + 1

It's auxiliary equation is 

m(m - 1) + m - 1 = 0

⇒ m2 - 1 = 0

⇒ m = \(\pm \)1

∴ \(C.F. = C_1e^z + C_2e^{-z} = C_1x + \frac{C_2}x\)  (∵ \(e^z = x\))

\(P.I. = \frac1{D^2 - 1} (e^{2z} + 1)\)

\(= \frac1{D^2 - 1}e^{2z} + \frac1{D^2 - 1}e^{0z}\)

\(= \frac{e^{2z}}{4 - 1} + \frac{e^{0z}}{0 - 1}\)

\(= \frac{e^{2z}}{3} + \frac1{-1}\)

\(= \frac{e^{2z}}{3} - 1\)

\(= \frac{x^2}{3} - 1\)  (∵ \(e^z = x\))

∴ \(y = C.F. + P.I.\)

\(= C_1x+ \frac{C_2}x + \frac{x^2}3 - 1\)

which is complete solution of given differential equation.



Discussion

No Comment Found

Related InterviewSolutions