Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 101. |
`int_(0)^(oo)((tan^(-1)x)/(x(1+x^(2))))dx` |
| Answer» Correct Answer - `(pi)/(2)ln2` | |
| 102. |
Evaluate:`int_1^oo(e^(x+1)+e^(3-1))^(-1)dx` |
|
Answer» Correct Answer - `(pi)/(4e^(2))` `I=int_(1)^(oo)(dx)/((ee^(x)+e^(3)e^(-x)))` `=int_(1)^(oo) (e^(x)dx)/(e(e^(2x)+e^(2)))` (multiply `N^(R)` and `D^(r)`by `e^(x)`) Put `e^(x)=t` or `e^(x) dx=dt` `:. I=1/e int_(e)^(oo) (dt)/(t^(2)+e^(2))` `=1/(e^(2))"tan"(-1)t/e|_(e)^(oo)` `=1/(e^(2))[(pi)/2-(pi)/4]=(pi)/(4e^(2))` |
|
| 103. |
`int_(0)^(1) lnsin(pi/2x) dx` |
| Answer» Correct Answer - `-ln 2` | |
| 104. |
Let `f(x)` be a function satisfying `f(x) f(x+2) = 10 AA x in R`, thenA. `f(x)` is a periodic functionB. `f(x)` is aperiodic functionC. `underset(1)overset(7)intf(x) dx = 20`D. `underset(1)overset(7)intf(x) dx = 20` |
| Answer» Correct Answer - A::D | |
| 105. |
Evaluate:`int_0^(1/(sqrt(2)))(sin^(-1)x)/((1-x^2)sqrt(1-x^2))dx` |
|
Answer» Correct Answer - `(pi)/4-1/2 log2` Put `x=sin theta`.So `dx=cos theta d theta` When `x=0, theta=0`, when `x=1/(sqrt(2)),theta=(pi)/4` `:.` Given integral `=int_(0)^(pi//4)(sin^(-1)(sin theta)cos theta d theta)/((1-sin^(2) theta)^(3//2))` `=int_(0)^(pi//4)(theta cos theta)/(cos^(3) theta) d theta= int_(1)^(pi//4) underset(I)(theta).underset(II)(sec^(2)) theta d theta` `=|theta tan theta |_(0)^(pi//4)-int_(0)^(pi//4)1.tan d theta` `=(pi)/4 "tan" (pi)/4+log cos theta|_(0)^(pi//4)` `=(pi)/4+"log cos"(pi)/4-"log cos"=(pi)/4+"log"1/(sqrt(2))` `=(pi)/4+log1-log(2)^(1//2)=(pi)/4-1/2 log 2` |
|
| 106. |
Let `f(x) = int_(0)^(pi)(sinx)^(n) dx, n in N` thenA. `I_(n)` is rational if n is oddB. `I_(n)` is irrational if n is evenC. `I_(n)` is an increasing sequenceD. `I_(n)` is a decreasing sequence |
| Answer» Correct Answer - A::B::D | |
| 107. |
`int_(-1)^(41//2)e^(2x-[2x])dx`, where `[*]` denotes the greatest integer function. |
| Answer» Correct Answer - `43/2(e-1)` | |
| 108. |
`int_(0)^(2pi)|sqrt(15) sin x + cos x|dx` |
| Answer» Correct Answer - 16 | |
| 109. |
If `f(x)={{:(x+3 : x lt 3),(3x^(2)+1:xge3):}`, then find `int_(2)^(5) f(x) dx`. |
|
Answer» `underset(2)overset(5)intf(x)dx=underset(2)overset(3)intf(x)dx+underset(5)overset(3)intf(x)dx=underset(2)overset(3)int(x+3)dx+overset(5)underset(3)int(3x^(2)+1)dx=[(x^(2))/(2)+3x]_(2)^(3)+[x^(3)+x]_(3)^(5)` `= (9-4)/(2)+3(3-2)+5^(3)-3^(3)+5-3=(211)/(2)` |
|
| 110. |
Evaluate:`int_0^1(2-x^2)/((1+x)sqrt(1-x^2))dx` |
|
Answer» Correct Answer - `(pi)/2` Put `x=sintheta`. So `dx=cos theta d theta` `:.` Given integral `=int_(0)^(pi//2)((2-sin^(2)theta)cos theta d theta)/((1+sin theta) cos theta)` `=int_(0)^(pi//2)(1-sin theta+1/(1+sin theta))d theta` `=|theta + cos theta|_(0)^(pi//2)+int_(0)^(pi//2)(d theta)/(1+sin theta)` `=(pi)/2-1+int_(0)^(pi//2)(1-sin theta)/(cos^(2)theta) d theta` `(pi)/2-1+int_(0)^(pi//2) (sec^(2) theta -sec theta tan )d theta` `=(pi)/2-1+|tan theta -sec theta|_(0)^(pi//2)` `=(pi)/2-1+lim_(theta to pi//2)(sin theta-1)/(cos theta)-(sin 0-1)/(cos 0)` `=(pi)/2-1+lim_(theta to pi//2) (cos theta)/(sin theta) +1` `=(pi)/2` |
|
| 111. |
Evaluate:`int_(-1)^3(tan^(-1)d/(x^2+1)+(x^2+1)/x)dx` |
|
Answer» Correct Answer - `2pi` `int_(1)^(3)("tan"^(-1)x/(x^(2)+1)+"tan"^(-1)(x^(2)+1)/x)dx` `=int_(-1)^(0)("tan"^(-1)x/(x^(2)+1)+"tan"^(-1)(x^(2)+1)/x)dx` `+int_(0)^(3)("tan"^(-1)x/(x^(2)+1)+"tan"^(-1)(x^(2)+1)/x)dx` `int_(-1)^(0)-(pi)/2 dx+int_(0)^(3)(pi)/2 dx` `=[-(pi)/2 x]_(-1)^(0)+[(pi)/2x]_(0)^(3)` `=2pi` |
|
| 112. |
Let `f(x) = int_(0)^(x)|2t-3|dt`, then f isA. continuous at `x = 3//2`B. continuous at `x = 3`C. differentiable at `x = 3//2`D. differentiable at `x = 0` |
| Answer» Correct Answer - A::B::C::D | |
| 113. |
`int_(0)^((14pi)/3) |sinx|dx` |
| Answer» Correct Answer - `19/2` | |
| 114. |
Evaluate `int_(2)^(8)|x-5|dx`. |
| Answer» `overset(8)underset(2)int|x-5|dx=overset(5)underset(2)int(-x+5)dx+overset(8)underset(5)int(x-5)dx = 9` | |
| 115. |
Evaluate the following : `int_(0)^(pi//2)(dx)/(a^(2)cos^(2)x+b^(2)sin^(2)x)` |
|
Answer» Correct Answer - `(pi)/(2ab)` `I=int_(0)^(pi//2) (dx)/(a^(2)cos^(2)x+b^(2)sin^(2)x)` `=int_(0)^(pi//2) (sec^(2)x dx)/(a^(2)+b^(2)tan^(2)x)=1/(b^(2)) int_(0)^(pi//2) (sec^(2) xdx)/((a/b)^(2)+tan^(2)x)` Put `tan x=z` or `sec^(2) x dx=dz` When `x=0, z=0, xto (pi)/2, zto oo` `:.I=1/(b^(2)) int_(0)^(oo) (dz)/((a/b)^(2)+z^(2))` `=1/(b^(2))1/(a/b)|"tan"^(-1)z/(a//b)|_(0)^(oo)` `=1/(ab)[tan^(-1)oo-tan^(-1)0]` `=1/(ab) (pi)/2` `=(pi)/(2ab)` |
|
| 116. |
Evaluate `int_(1)^(5)sqrt(x-2)sqrt(x-1)dx`. |
|
Answer» Correct Answer - `2` `int_(1)^(5)sqrt(x-2sqrt(x-1))dx=int_(1)^(5)sqrt((sqrt(x-1)-1)^(2))dx` `=int_(1)^(5)|sqrt(x-1)-1|dx` `=int_(1)^(2)(1-sqrt(x-1))dx+int_(2)^(5)(sqrt(x-1)-1)dx` `=|x-(2x(x-1)^(3//2))/3|_(1)^(2)+|(2(x-1)^(3//2))/3-x|_(2)^(5)` `=(2-2/3-1+0)+(16/3-5-2/3+2)=2` |
|
| 117. |
`P rov et h a t4lt=int_1^3sqrt(3+x^2)lt=4sqrt(3)` |
|
Answer» Correct Answer - NA Since `1lexle3` or `1lex^(2)le9` or `4lex^(2)+3le12` or `2lesqrt(3+x^(2))le2sqrt(3)` or `2(3-1)leint_(1)^(3)sqrt(3+x^(2))dx le 2sqrt(3)(3-1)` or `4le int_(1)^(3)sqrt(3+x^(2))le 4 sqrt(3)` |
|
| 118. |
Evaluate `int_(0)^(2pi) (dx)/(1+3cos^(2)x)` |
|
Answer» `I=int_(0)^(2pi)(dx)/(1+3cos^(2)x)` `=int_(0)^(2pi)(sec^(2) xdx)/(sec^(2)x+3)` `=int_(0)^(2pi)(sec^(2) xdx)/(4+tan^(2)x)` Here we cannot substitute `tan x=t` as `tanx` is discontinuous in `(0,2pi)` Let `f(x)=(sec^(2)x)/(4+tan^(2)x)` `:f(2pix)=f(x)` `:.I=2 int_(0)^(pi)(sec^(2) xdx)/(4+tan^(2)x)` Also `f(pi-x)=f(x)` `:. I=4 int_(0)^(pi//2)(sec^(2) xdx)/(4+tan^(2)x` `=4 int_(0)^(oo) (dt)/(4+t^(2))` (Putting `tanx=t` as `tanx` is continuous in `(0,pi//2)` `=4/2[tan^(-1)t/2]_(0)^(oo)` `=2[ta ^(-1)oo-tan^(-1)0]` `=pi` |
|
| 119. |
`int_(0)^(pi//4)(x.sinx)/(cos^(3)x)` dx equal to :A. `(pi)/(4)+1/2`B. `(pi)/(4)-1/2`C. `(pi)/(4)`D. `(pi)/(4)+1` |
| Answer» Correct Answer - B | |
| 120. |
`int_(-1)^(2)[([x])/(1+x^(2))]dx`, where [.] denotes the greatest integer function, is equal toA. `-2`B. `-1`C. zeroD. none of these |
|
Answer» Correct Answer - B `[x]=0,AAxepsilon[0,1)` For `x epsilon[1,2),[x]=1` `:.([x])/(1+x^(2))=1/(1+x^(2))lt 1AAxepsilon[1,2)` or `[([x])/(1+x^(2))]=0` For `x epsilon[-1,0),[x]=-1` or `([x])/((1+x)^(2))=-1/(1+x^(2))` Clearly, `2ge1 +x^(2)gt1AAxepsilon[-1,0)` or `1/2le 1(1+x^(2))lt 1` or `-1/2ge - 1/(1+x^(2))gt-1` or `[([x])/(1+x^(2))]=-1AAxepsilon[-1,0)` Thus, the given integral `=-int_(-1)^(0)dx=-1`. |
|
| 121. |
`int_(0)^(pi//4) log (1+tan x) dx =?` |
|
Answer» Correct Answer - `(pi)/(8) (log2)` Let `I=int_(0)^(pi//4) log (1+tanx )dx` . . . (i) `I=int _(0)^(pi//4)log (1+tan((pi)/(4)-x))dx` `:. I= int _(0)^(pi//4)log (1+(1-tanx)/(1+tanx))dx` `=int_(0)^(pi//4) log ((1+tanx+1-tanx)/(1+tanx))dx` `I= int_(0)^(pi//4)log((2)/(1+tanx))dx rArrI=int _(0)^(pi//4)log 2 dx - I` `rArr 2 I = (pi)/(4) log 2 rArr I=(pi)/(8) (log2)` |
|
| 122. |
Evaluate `int_0^1(dx)/((5+2x-2x^2)(1+e^(2-4x))) dx` |
|
Answer» Let `I=int_(0)^(1)(dx)/((5+2x-2x^(2))(1+e^(2-4x)))` Also `I=int_(0)^(1)(dx)/([5+2(1-x)-2(1-x)^(2)][1+e^(2-4(1-x))])` `=int_(0)^(1)(dx)/((5+2x-2x^(2))(1+e^(-2+4x)))` `=int_(0)^(1)(e^(2-4x)dx)/((5+2x-2x^(2))(e^(2-4x)+1))` Adding 1 and 2 we get `2I=int_(0)^(1)((1+e^(2-4x))dx)/((5+2x-2x^(2))(1+e^(2-4x)))` `int_(0)^(1)(dx)/(5-2(x^(2)-x))=int_(0)^(1)(dx)/(1/2+5-2(x-1/2)^(2))` `=1/2int_(0)^(1)(dx)/(11/4-(x-1/2)^(2))` `=1/(4sqrt(11)//2)|log(sqrt(11)//2+x-1/2)/(sqrt(11)//2-(x-1/2))|_(0)^(1)` `=1/(2sqrt(11))["log" ((sqrt(11))2+1/2)/((sqrt(11))/2-1/2)-"log"((sqrt(11))/2-1/2)/((sqrt(11))/2+1/2)]` `=1/(2sqrt(11))[2log((sqrt(11)+1)/(sqrt(11)-1))]` `=1/(sqrt(11))log((sqrt(11)+1)/(sqrt(11)-1))` `=1/(sqrt(11))"log"(sqrt(11)+1)/(sqrt(11)-1)(sqrt(11)+1)/(sqrt(11)+1)` `=1/(sqrt(11))"log"((sqrt(11)+1)^(2))/10` |
|
| 123. |
For `theta in (=,pi/2),p rov et h a tint_0^theta"log"(1+tanthetatanx)dx=thetalog(sectheta)` |
|
Answer» `I=int_(0)^(theta)log(1+tan theta tan x) dx` `=int_(0)^(theta)log(1+tan theta tan (theta-x))dx` `=int_(0)^(theta)log(1+(tantheta(tan theta-tan x))/(1+tan theta tan x))dx` `=int_(0)^(theta)"log"((1+tan^(2)theta))/(1+tan theta tan x)dx` `=int_(0)^(theta)log(1+tan^(2)theta)dx-int_(0)^(theta)log(1+tan theta tan x)dx` `=2theta log sec theta -I` or `2I=2theta log sec theta` or `I=thetalog sec theta` |
|
| 124. |
Determine the value of `int_(-pi)^(pi) (2x(1+sinx))/(1+cos^(2)x)dx`. |
|
Answer» `I=int_(-pi)^(pi)(2x(1+sinx))/(1+cos^(2)x) dx` `=int_(-pi)^(pi)(2x)/(1+cos^(2)x)dx+2int_(-pi)^(pi)(x sin x)/(1+cos^(2)x)`……………1 `=0+4int_(0)^(4)(x sinx)/(1+cos^(2)x)dx` `=4int_(0)^(pi)((pi-x)sin(pi-x))/(1+cos^(2)(pi-x))dx` `=4int_(0)(pi)((pi-x)sinx)/(1+cos^(2)x)dx` `=4pii int_(0)^(pi)(sinx)/(1+cos^(2)x)dx-4 int_(0)^(pi)(x sinx)/(1+cos^(2)x)dx` or `2I=4pi int_(0)^(pi)(sinx)/(1+cos^(2)x) dx` or `I=2i int_(0)^(pi)(sinx)/(1+cos^(2)x) dx` Put `cosx=t` so that `-sinx dx=dt` when `x=0, t=1`, when `x=pi,t=-1`, `:.I=2pi int_(1)^(-1)(-dt)/(1+t^(2))=4pi int_(0)^(1)(dt)/(1+t^(2))` `=4pi [tan^(-1)t]_(0)^(1)` `=4pi(pi)/4=pi^(2)` |
|
| 125. |
`int_(3)^(10)[log[x]]dx` is equal to (where [.] represents the greatest integer function)A. 9B. `16-e`C. `10`D. `10+e` |
|
Answer» Correct Answer - A When `ele[x]lt e^(2), 1le log [x]lt 2` when `e^(2) le [x] lte^(3), 2lt log [x] lt 3` `:.int_(3)^(8)1 dx+int_(8)^(10)2dx=9` |
|
| 126. |
The value of `int_(-pi)^(pi)(2x(1+sinx))/(1+cos^(2)x)dx` is |
|
Answer» Correct Answer - `pi^(2)` Let `I=int _(-pi)^(pi)(2x(1+sinx))/(1+cos ^(2)x)dx` `I=int_(-pi)^(pi)(2x)/(1+cos^(2)x)dx =int_(-pi)^(pi)(2x sinx)/(1+cos^(2)x)` `rArr I=I_(1)_I_(2)` Now , `I _(1)= int_(-pi)^(pi) (2x)/(1+cos^(2)x)dx` Let ` f(x) = (2x)/(1+cos ^(2)x)` `rArr f(-x)= (-2x)/(1+cos ^(2)(-x))=(-2x)/(1+cos^(2)x)=-f(x)` `rArr f(-x) =- f(x)` which shows that f (x) is an odd function. `:. I_(1)=0` Again . let ` g(x)= (2xsinx)/(1+cos^(2)x)` `rArr g(-x)= (2(-x)sin(-x))/(1+cos^(2)(-x))= (2x sin x )/(1+ cos^(2)x)=g(x)` `rArr g (-x) = g (x)` which shows that g (x) is an even function. `:. I_(2)=int_(-pi)^(pi) (2x sin x)/(1+cos ^(2)x)dx = 2*2int _(0)^(pi)(x sinx)/(1+cos ^(2)x)dx` `= 4 int _(0)^(pi) ((pi-x)sin(pi-x))/(1+[cos (pi-x)]^(2))dx = 4 int _(0)^(pi) ((pi-x)sinx)/(1+cos ^(2)x)dx` `=4 int_(0)^(pi) (pisinx)/(1+cos^(2)x)dx -4 int _(0)^(pi)(xsinx)/(1+cos^(2)x)dx` `rArr I_(2) = 4 pi int_(0)^(pi)(sinx)/ (cos ^(2)c)dx-I_(2)` `rArr 2I_(2)=4piint _(0)^(pi) (sinx)/(1+cos^(2)x)dx` Put `cos x= t rArr - sin x dx = dt` `:. I_(2)=-2piint _(1)^(-1)(dt)/(1+t^(2))= 2 pi int _(-1)^(1)(dt)/(1+t^(2))=4pi int _(0)^(1)(dt)/(1+ t^(2))` `=4pi [tan^(-1)t] _(0)^(1) =4pi [tan^(-1)1-tan^(-1)0]` `4pi (pi//4-0)=pi^(2)` `:. I-I_(1) =I_(2)=0+pi^(2)=pi^(2)` |
|
| 127. |
Evaluate `int_(-pi//2)^(pi//2) sqrt(cosx-cos^(3)x)dx`. |
|
Answer» `I=int_(-pi//2)(pi//2)ubrace(sqrt(cosx-cos^(3)x)dx)_(f(x))` `2int_(0)^(pi/2)sqrt(cosx-cos^(3)x) dx` (as `f(x)` is an even function) `=2int_(0)^(pi//2) sqrt(cosx sin^(2)x) dx` `=2int_(0)^(pi//2)sqrt(cosx) sin xdx` `=2[-((cosx)^(3//2))/(3//2)]_(0)^(pi/2)` `=2xx2/3` `=4/3` |
|
| 128. |
Find the value of `int_(-2)^(2)(sin^(-1)(sinx)+cos^(-1)(cosx))/((1+x^(2))(1+[(x^(2))/5]))dx`, where [.] represents the greatest integer function. |
|
Answer» `I=int_(-2)(2)(sin^(-1)(sinx)+cos^(-1)(cosx))/((1+x^(2))(1+[(x^(2))/5]))` `sin^(-1)(sinx)` is an odd function. Also for `-2lt xlt 2, 0le x^(2)lt4`. `:. [(x^(2))/5]=0` `:.I=int_(-1)^(2)(cos^(-1)(cosx))/(1+x^(2))dx` `=int_(0)^(2)(2cos^(-1)(cosx))/(1+x^(2))dx` `=int_(0)^(2)(2x)/(1+x^(2)dx` `=[log_(e)(1+x^(2))]_(0)^(2)` `=log_(e)4` |
|
| 129. |
Evaluate:`int_2^3(2x^5+x^4-2x^3+2x^2+1)/((x^2+1)(x^4-1))dx` |
|
Answer» Correct Answer - `(1)/(2)log6-(1)/(10)` Let `I= int_(2)^(3)(2x^(5)+x^(4)-2x^(3)+2x^(2)+1)/((x^(2)+1)(x^(4)-1))dx` `=int_(2)^(3)(2x^(5)-2x^(3)+x^(4)+1+2x^(2))/((x^(2)+1)(x^(2)-1)(x^(2)+1))dx` `=int_(2)^(3)(2x^(3)(x^(2)-1)+(x^(2)+1)^(2))/((x^(2)+1)^(2)(x^(2)-1))dx` `int_(2)^(3)(2x^(3)(x^(2)-1))/((x^(2)+1)^(2)(x^(2)-1))dx+int_(2)^(3)((x^(2)+1)^(2))/((x^(2)+1)^(2)(x^(2)-1))dx` `=int_(2)^(2)(2x^(3))/((x^(2)+1)^(2))dx+int_(2)^(3)(1)/((x^(2)-1))dx` `rArr I=I_(1)+I_(2)` Now , `I_(1)=int_(2)^(3)(2x^(3))/((x^(2)+1)^(2))dx` Put `x^(2)=1=trArr2x dx = dt` `:. I_(1)= int_(5)^(10)((t-1))/(t^(2))dt=int_(5)^(10)(1)/(t)dt-int(1)/(t^(2))dt` `=[logt _(5)^(10)+[(1)/(t)]_(5)^(10)` `=log10- log 5+(1)/(10)-(1)/(5)` `= log2 -(1)/(10)` Again , `I_(2)=int _(2)^(3)(1)/((x^(2)-1))dx =int_(2)^(3)(1)/((x-1)(x+1))dx` `=(1)/(2)int_(2)^(3)(1)/((x-1))dx -(1)/(2) int _(2)^(3)(1)/((x-1)(x+1))dx` `=[(1)/(2)log(x-1)]_(2)^(3)-(1)/(2)["log"(x+1)]_(2)^(3)` `=(1)/(2)" log " (2)/(1)" log " (4)/(3)` From Eq . (i) , `I=I_(1)+I_(2)` ` =" log " 2 - (1)/(10)+(1)/(2)" log " 2 -(1)/(2)" log " (4)/(3)` `=log [2*2^(1//2)((4)/(3))^(-1//2)]-(1)/(10)=(1)/(2) log 6 - (1)/(10)` |
|
| 130. |
Evaluate the definite integral:`int_(-1/(sqrt(3)))^(1/(sqrt(3)))((x^4)/(1-x^4))cos^(01)((2x)/(1+x^2))dxdot` |
|
Answer» Let `I=int_(-1//sqrt(3))^(1//sqrt(3))(x^(4))/(1-x^(4))cos^(-1)((2x)/(1+x^(2)))dx` `=int_(1//sqrt(3))^(1//sqrt(3))((-x)^(4))/(1-(-x)^(4))cos^(-1)((2(-x))/(1+(-x)^(2)))dx` `=int_(-1//sqrt(3))^(1//sqrt(3))(x^(4))/(1-x^(4))[pi-cos^(-1)((2x)/(1+x^(2)))]dx` `=pi int_(-1//sqrt(3))^(1/sqrt(3))(x^(4))/(1-x^(4))dx-I` `:.2I=2pi int_(0)^(1//sqrt(3))(x^(4))/(1-x^(4))dx` `:.I=pi int_(0)^(1//sqrt(3))[-1+1/(1-x^(4))]dx` `=-pi int_(0)^(1//sqrt(3))dx+(pi)/2 int_(0)^(1//sqrt(3))[1/(1-x^(2))+1/(1+x^(2))]dx` `=-(pi)/(sqrt(3))+(pi)/2[(-1/2 log_(e)|(1-x)/(1+x)|+tan^(-1)x)]_(0)^(1//sqrt(3))` `=-(pi)/(sqrt(3))+(pi)/2(1/2log_(e)|(sqrt(3)+1)/(sqrt(3)-1)|+(pi)/6)` |
|
| 131. |
`Lim_(n->oo)[1/n^2 * sec^2 (1/n^2)+2/n^2 * sec^2 (4/n^2)+..............+1/n * sec^2 1]` |
|
Answer» Correct Answer - `1/2 tan1` `lim_(n to oo) [1/(n^(2)) "sec"^(2)1/(n^(2))+2/(n^(2))"sec"^(2) 4/(n^(2))+……..+1/nsec^(2)1]` `=lim_(nto oo) 1/n sum_(r=1)^(n)r/n"sec"^(2)(r/n)^(2)` `=int_(0)^(1)x sec^(2) x^(2) dx` Put `x^(2)=t` so that `2x dx=dt` When `x=0, t=0`, When `x=1, t=1` `:. `Required limit `=1/2 int_(0)^(1) sec^(2) t dt ` `=1/2 [tan t]_(0)^(1)=1/2[tan 1-0]` `=1/2 tan 1` |
|
| 132. |
`IfS_n=[1/(1+sqrt(n))+1/(2+sqrt(2n))++1/(n+sqrt(n^2))],t h e n(lim)_(nvecoo)S_n`is equal tolog 2 (b) log4log 8 (d) none of theseA. `log2`B. `log 4`C. `log 8`D. none of these |
|
Answer» Correct Answer - B `lim_(nto oo) S_(n)=lim_(nto oo) [1/(1+sqrt(n))+1/(2+sqrt(2n))+………..+1/(n+sqrt(n)^(2))]` `=lim_(nto oo) 1/n [1/(1/n+1/(sqrt(n)))+1/(2/n+sqrt(2/n))+……..+1/(n/n+sqrt(n/n))]` `=int_(0)^(1)(dx)/(sqrt(x)(sqrt(x)+1))` Put `sqrt(x)=z` or `1/(2sqrt(x))dx=dz` `:. lim_(n to oo) S_(n)=int_(0)^(1)(2 dz)/(z+1)=2|log(z+1)|_(0)^(1)` `=2(log2-log1)` `=2log2=log4` |
|
| 133. |
`L e tJ=int_(-5)^(-4)(3-x^2)tan(3-x^2)dxa n dK=int_(-2)^(-1)(6-6x+x^2)``tan(6x-x^2-6)dxdotT h e n(J+K)`equals _____ |
|
Answer» We have `J=int_(-5)^(-4)(3-x^(2))tan(3-x^(2))dx` Put `(x+5)=t`. Then `J=int_(0)^(1)(3-(t-5)^(2))tan(3-(t-5)^(2))dt` `=int_(0)^(1)(-22+10t-t^(2))tan(-22+10t-t^(2))dt` Now `K=int_(-2)^(-1)(6-6x+x^(2))tan(6x-x^(2)-6)dx` Put `(x+2)=z`. Then `K=int_(0)^(1)(6-6(z-2)+(z-2)^(2))tan(6(z-2)-(z-2)^(2)-6)` `=int_(0)^()(22-10z+z^(2))tan(-22+10z-z^(2))dz` Hence `(J+K)=0` |
|
| 134. |
Evaluate: `int_(pi//6)^(pi//4)(1+cotx)/(e^(x)sinx) dx` |
|
Answer» Correct Answer - `2e^(-pi//6)-sqrt(2)e^(-pi//4)` `I=int_(pi//6)^(pi//4) e^(-x)(cosecx+cot x cosec x)dx` Put `x=timpliesdx=-dt` `:. I=-int_(-pi//6)^(-pi//4) e^(t)(-cosect+cot.cosec)dt` `=int_(-pi//6)^(-pi//4)e^(t)(cosect-cot t. cosec t)dt` `=e^(t)cosec t|_(-pi//6)^(-pi//4)` `=-sqrt(2)e^(-pi//4)+2d^(-pi//6)` `=2e^(-pi//6)-sqrt(2)e^(-pi//4)` |
|
| 135. |
Evaluate:`int_0^oolog(x+1/x)(dx)/(1+x^2)` |
|
Answer» Putting `x=tan theta, dx=sec^(2)theta d theta`, given integral becomes `I=int_(0)^(pi//2)(log(tan theta+cot theta))/(1+tan^(2) theta) sec^(2) theta d theta` `=int_(0)^(pi//2) log (sin theta//cos theta +cos theta // sin theta )d theta` `=int_(0)^(pi//2)log{1//(sin theta cos theta)}d theta` `=-int_(0)^(pi//2) log sin theta d theta -int_(0)^(pi//2) log cos theta d theta` `=-2(-1/2pi log 2)=pi log 2` |
|
| 136. |
If `f`is an odd function, then evaluate`I=int_(-a)^a(f(sinx)/(f(cosx)+f(sin^2x)dx` |
|
Answer» Let `phi(x)=(f(sinx))/(f(cosx)+f(sin^(2)x))` `:.phi(-x)=(f(sin(-x)))/(f(cos(-x))+f(sin^(2)(-x)))` `=(f(-sinx))/(f(cosx)+f(sin^(2)x))` `=(-f(sinx))/(f(cosx)+f(sin^(2)x))=-phi(x)` ( `:.f` is an odd function) `:.I=int_(a)^(a)(f(sinx))/(f(cosx)+f(sin^(2)x))dx=0` |
|
| 137. |
Evaluate:`int_(-1)^4f(x)dx=4a n dint_2^4(3-f(x))dx=7,`then find the value of `int_2^(-1)f(x)dxdot` |
|
Answer» Correct Answer - `-5` We have `int_(2)^(4)(3-f(x))dx=7` `:.6-int_(2)^(4)f(x)dx=7` or `int_(2)^(4)f(x)dx=-1` Now, `int_(2)^(-1)f(x)dx=-int_(-1)^(2)f(x)dx=-[int_(-1)^(4)f(x)dx+int_(4)^(2)f(x)dx]` `=-[int_(-1)^(4)f(x)dx-int_(2)^(4)f(x)dx]=-[4+1]=-5` |
|
| 138. |
Show that `int_(0)^(2)(2x+1)dx = int_(0)^(5)(2x+1)+int_(5)^(2)(2x+1)` |
|
Answer» L.H.S `= x^(2)+x]_(0)^(2)= 4+2=6` , R.H.S. `= 25+5-0+(4+2)-(25+5) = 6` `:.` L.H.S = R.H.S |
|
| 139. |
Evaluate:`5050(int0 1(1-x^(50))^(100)dx)/(int0 1(1-x^(50))^(101)dx)` |
|
Answer» Correct Answer - 5051 `int_(0)^(1)(1-x^(50))^(101)dx` `=[x(1-x^(50))^(101)]_(0)^(1)-int_(0)^(1)x.101(1-x^(50))^(100)(-50x^(49))dx` `=0+5050 int_(0)^(1)x^(50)(1-x^(50))^(100)dx` `=-5050int_(0)^(1)(1-x^(50)-1)(1-x^(50))^(100)dx` `=-5050int_(0)^(1)(1-x^(50))^(101)dx+5050int_(0)^(1)(1-x^(50))^(100)dx` `=5051int_(0)^(1)(1-x^(50))^(101)dx=5050int_(0)^(1)(1-x^(50))^(100) dx` `implies 5050(int_(0)^(1)(1-x^(50))^(100)dx)/((1-x^(50))^(101)dx)=5051` |
|
| 140. |
Evaluate `int_(0)^(1)(e^(-x)dx)/(1+e^(x))` |
|
Answer» Correct Answer - `log(1+e)-1/3-log2` `I=int_(0)^(1)(e^(-x) dx)/(1+e^(x))=int_(0)^(1)(dx)/(e^(x)(1+e^(x)))` Put `e^(x)=z` `:.e^(x)dx=dz` `implies dx=(dz)/(e^(x))=(dz)/z` `impliesI=int_(1)^(e)(dz)/(z^(2)(1+z))` `=int_(1)^(e)(1/(1+z)-(z-1)/(z^(2)))dz` `=|log_(e)(1+z)-log_(e)z-1/z|_(1)^(e)` `=(log_(e)(1+e)-log_(e) e-1/e)-(log_(e)2-log_(e)1-1)` `=log(1+e)-1/e-log2` |
|
| 141. |
Evaluate:`("lim")_(nvecoo)(1/(sqrt(4n^2-1))+1/(sqrt(4n^2-2^2))++1/(sqrt(3n^2)))` |
|
Answer» Correct Answer - `(pi)/6` Given limit `=lim_(nto oo) 1/n[n/(sqrt(4n^(2)-1))+n/(sqrt(4n^(2)-2^(2)))+…………+n/(sqrt(4n^(2)-n^(2)))]` `=lim_(n to oo) 1/n[1/(sqrt(4-(1/n)^(2)))+1/(sqrt(4-(2/n)^(2)))+……………1/(sqrt(4-(n/n)^(2)))]` `=int_(0)^(1)(dx)/(sqrt(4-x^(2)))=|sin^(-1)x/2|_(0)^(1)="sin"^(-1)1/2-0=(pi)/6` |
|
| 142. |
`int_(0)^(pi) x log sinx dx` |
|
Answer» Let `I=int_(0)^(pi)x log sin x dx`………………….1 `:.I=int_(0)^(pi)(pi-x)logsin(pi-x)dx` or `I=int_(0)^(pi)(pi-x)logsinxdx`……………..2 Adding 1 and 2 we get `2pi=piint_(0)^(pi)logsinxdx` or `2I=2pi int_(0)^(pi//2)log sin x dx` or `I=pi int_(0)^(pi//2)log sinx` `=pi{1/2 pi log (1//2)}=1/2pi^(2)log(1//2)` |
|
| 143. |
Evaluate:`int_0^(pi/2)xcotx dx` |
|
Answer» Integrating by parts, taking `cotx` as second function given integral becomes. `I=[x log sin x]_(0)^(pi//2)-int_(0)^(pi//2)log sinx dx` `=0-lim_(xto oo) (xlog sin x)-int_(0)^(pi//2)log sin x dx=1/2 pilog 2` as `lim_(xto oo) x log sinx=lim_(xto oo) ((log sinx)/(1//x))` `=lim_(xto oo)((cotx))/(-1//(x^(2)))` `=lim_(xto oo) ((-x^(2))/(tanx))` `=lim_(xto oo) (-x xx x/(tanx))` `=0xx1=0` |
|
| 144. |
Prove that `int(g(sinx))/(g(sinx)+g(cosx))dx = int_(0)^(pi/2)(g(cosx))/(g(sinx)+g(cosx))dx = (pi)/(4)`. |
|
Answer» Let `=overset(pi/2)underset(0)int(g(sinx))/(g(sinx)+g(cosx))dx rArr I = underset(0)overset(pi/2)int(g(sin(pi/2-x)))/(g(sin(pi/2-x))+g(cos(pi/2-x)))dx` `=overset(pi/2)underset(0)int(g(cosx))/(g(cosx)+g(sinx))dx` on adding, we obtain ` = 2I = overset(pi/2)underset(0)int((g(sinx))/(g(sinx)+g(cosx))+(g(cosx))/(g(cosx)+g(sinx)))dx =overset(pi/2)underset(0)int dx rArr I = (pi)/(4)`. |
|
| 145. |
Evaluate `int_(-1)^(1)(3^(x)+3^(-x))/(1+3^(x))dx` |
|
Answer» `overset(1)underset(-1)int(3^(x)+3^(-x))/(1+3^(x))dx = underset(0)overset(1)int((3^(x)+3^(-x))/(1+3^(x))+(3^(-x)+3^(x))/(1+3^(x)))dx = underset(0)overset(1)int((3^(x)+3^(-x))/(1+3^(x))+(3(3^(-x)+3^(x)))/(1+3^(x)))` ` = underset(0)overset(1)int(3^(x)+3^(-x))dx=((3^(x))/(ln3)-(3^(-x))/(ln3))_(0)^(1) = (3/(ln3)-(3^(-1))/(ln3)) - ((1)/(ln3) - (1)/(ln3))=(1)/(ln3)[3-(1)/(3)] = (8)/(3ln3)` |
|
| 146. |
Evaluate `int_(0)^(pi//2)|sinx-cosx|dx`. |
|
Answer» Correct Answer - `2sqrt(2)-1)` `int_(0)^(pi//2)|sinx-cosx|dx` `=int_(0)^(pi//4)-(sinx-cosx)dx+int_(pi//4)^(pi//2)(sinx-cosx)dx` `=|cosx+sinx|_(0)^(pi//4)+|-cosx-sinx|_(pi//4)^(pi//2)` `=(1/(sqrt(2))+1/(sqrt(2))-1-0)+(-0-1+1/(sqrt(2))+1/(sqrt(2)))` `=4/(sqrt(2))-2=2sqrt(2)-2` `2(sqrt(2)-1)` |
|
| 147. |
Prove that `int_0^(102)(x-1)(x-2)(x-100)``x(1/((x-1)+1/((x-2))+1/((x-100))dx=101 !-100 !` |
|
Answer» Correct Answer - NA `I=int_(0)^(102)(x-1)(x-2)……(x-100)` `xx(1/((x-1))+1/((x-2))+…+1/((x-100)))dx` `-int_(0)^(102)d/(dx)((x-1)(x-2)………(x-100))dx` `=[(x-1)(x-2)…………(x-100)]_(0)^(102)` `=101!-100!` |
|
| 148. |
If `int_0^1(e^t)/(1+t)dt=a ,`then find the value of `int_0^1(e^t)/((1+t)^2)dt`in terms of `a`. |
|
Answer» Correct Answer - `a+1-e/2` `a=int_(0)^(1)(e^(t))/(1+t)dt=(1/((1+t))e^(t))_(0)^(1)=int_(0)^(1)(e^(t))/((1+t)^(2))dt` (Integrating by parts) `=e/2-1+int_(0)^(1)(e^(t))/((1+t)^(2)) dt` or `int_(0)^(1) (e^(t))/((1+t)^(2))dt=a+1-e/2` |
|
| 149. |
Evaluate:`int_(-pi/2)^(pi/2)sin^2xcos^2x(sinx+cosx)dx` |
|
Answer» Correct Answer - `4//15` Let `=int_(-pi//2)^(pi//2)sin^(2)x cos^(2)x(sinx+cosx)dx` `=int_(-pi//2)^(pi//2) sin^(3)x cos^(2)x dx+int_(-pi//2)^(pi//2) sin^(2) x cos^(3)x dx`………….1 Since `sin^(3)x cos^(2)x` is an odd functional and `sin^(2)x cos^(3)x` is an even function. Therefore `int_(-pi//2)^(pi//2) sin^(3)x cos^(2)x dx=0` and `int_(-pi//2)^(pi//2) sin^(2) x cos^(3)x dx =int_(0)^(pi//2) sin^(2)x cos^(3)x dx`. `:. I=2int_(0)^(pi//2) sin^(2)x cos^(3)x dx` `=2int_(0)^(1)t^(2)(1-t^(2))dt` `=int_(0)^(1)(t^(2)-t^(4))dt=2[1/3-1/5]=4/15` |
|
| 150. |
Show that :`int_0^1(logx)/((1+x))dx=-int_0^1(log(1+x))/x dx` |
|
Answer» Correct Answer - NA Let `I=int_(0)^(1)(logx)/((1+x))dx` `=[log x log (1+x)]_(0)^(1)-int_(0)^(1)(log(1+x))/x dx` `=0-int_(0)^(1)(log(1+x))/x dx` |
|