1.

Evaluate `int_(-1)^(1)(3^(x)+3^(-x))/(1+3^(x))dx`

Answer» `overset(1)underset(-1)int(3^(x)+3^(-x))/(1+3^(x))dx = underset(0)overset(1)int((3^(x)+3^(-x))/(1+3^(x))+(3^(-x)+3^(x))/(1+3^(x)))dx = underset(0)overset(1)int((3^(x)+3^(-x))/(1+3^(x))+(3(3^(-x)+3^(x)))/(1+3^(x)))`
` = underset(0)overset(1)int(3^(x)+3^(-x))dx=((3^(x))/(ln3)-(3^(-x))/(ln3))_(0)^(1) = (3/(ln3)-(3^(-1))/(ln3)) - ((1)/(ln3) - (1)/(ln3))=(1)/(ln3)[3-(1)/(3)] = (8)/(3ln3)`


Discussion

No Comment Found