Saved Bookmarks
| 1. |
Prove that:`I_n=int_0^oox^(2n+1)e^-x^2dx=(n !)/2,n in Ndot` |
|
Answer» `I_(n)=int_(0)^(oo) (x^(2))^(n)x e^(-x^(2))dx` Put `x^(2)=t` or `x dx=dt//2` `:.I_(n)=1/2 int_(0)^(oo) t^(n)e^(-t)dt` `=1/2[[-t^(n)e^(-t)]_(0)^(oo)+nint_(0)^(oo) t^(n-1)e^(-t)dt]` `=1/2[0+n int_(0)^(oo) t^(n-1)e^(-t)dt]` `=n/2int_(0)^(oo) t^(n-1)e^(-t)dt=nI_(n-1)` or `I_(n-1)=(n-1)I_(n-2)` or `I_(n)=n(n-1)(n-2).............1I_(0)` `n!I_(0)=n! 1/2int_(0)^(oo) e^(-t)dt` `=n! 1/2 [-e^(-t)]_(0)^(oo) =(n!)/2` |
|