Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

201.

The value of `int_-pi^pi cos^2x/[1+a^x].dx`,a>0 isA. `pi`B. `api`C. `(pi)/(2)`D. `2pi`

Answer» Correct Answer - C
Let `I=int_(-pi)^(pi)(cos^(2)x)/(1+a^(x))dx` . . . (i)
`=int_(pi)^(-pi)(cos^(2)(-x))/(1+a^(-x))d(-x)`
`rArrI=int_(-pi)^(pi)a^(x)(cos^(2)x)/(1+a)dx`
On adding Eqs . (i) and (ii) , we get
`2I=int_(-pi)^(pi)((1+a^(x))/(1+a^(x)))cos^(2)xdx`
`=int_(-pi)^(pi)cos^(2)xdx=2int_(0)^(pi)(1+cos2x)/(2)dx`
`=int_(0)^(pi)(1+cos2x)dx`
`=int_(0)^(pi)1dx+int_(0)^(pi)cos2xdx`
`=[x]_(0)^(pi)+2int_(0)^(pi//2)cos2xdx=pi+0`
`rArr2I=pirArrI=pi//2`
202.

Let a and b be two positive real numbers. Then the value of `int_(a)^(b)(e^(x//a)-e^(b//x))/(x)dx` is

Answer» Correct Answer - A
`I=int_(a)^(b)(e^(x//a)-e^(b//a))/(x)dx`
Put `(x)/(a)=(b)/(y)`
`rArr" "I=int_(b)^(a)(e^((b)/(y))-e^((y)/(a)))/((ab)/(y))(-(ab)/(y^(2)))dy`
`" "=int_(a)^(b)(b^(b//x)-e^(x//a))/(x)dx=-I`
`rArr" "2I=0`
`rArr" "I=0`
203.

`int_(1//3)^(3)(1)/(x)log_(e)(|(x+x^(2)-1)/(x-x^(2)+1)|)dx` is equal toA. `(8)/(3)`B. `-(8)/(3)`C. 0D. 3

Answer» Correct Answer - C
`I=int_(1//3)^(2)(1)/(x)log_(e)(|(x+x^(2)-1)/(x-x^(2)+1)|)dx`
Let `x=(1)/(t)rArr dx =-(1)/(t^(2))dt`
`rArr" "I=-int_(3)^(1//3)tlog_(e)(|((1)/(t)+(1)/(t^(2))-1)/((1)/(t)-(1)/(t^(2))+1)|)(1)/(t^(2))dt`
`" "=int_(1//3)^(3)(1)/(t)log_(e)(|(t-t^(2)+1)/(t+t^(2)-1)|)dt`
`" "=-int_(1//3)^(3)(1)/(x)log_(2)(|(x+x^(2)-1)/(x-x^(2)+1)|)dx`
`rArr" "I=-IrArr I=0`
204.

The area (in sq. units) of the region described by `{(x,y) , y^(2) ge 2x` and `y ge 4x - 1}` isA. `7/32`B. `5/64`C. `15/64`D. `9/32`

Answer» Correct Answer - D
205.

The area of the region described by `A = {(x,y) : x^(2)+y^(2) le 1` and `y^(2) le 1-x}` is :A. `pi/2-2/3`B. `pi/2+2/3`C. `pi/2+4/3`D. `pi/2+4/3`

Answer» Correct Answer - C
206.

The integral `int_(1)^(e){((x)/(e))^(2x)-((e)/(x))^(x)} "log"_(e)x` dx is equal toA. `(3)/(2)-e-(1)/(2e^(2))`B. `-(1)/(2)+(1)/(e)-(1)/(2e^(2))`C. `(1)/(2)-e-(1)/(e^(2))`D. `(3)/(2)-(1)/(e)-(1)/(2e^(2))`

Answer» Correct Answer - A
Let `I=int_(1)^(e){((x)/(e))^(2x)-((e)/x)^(x)} "log"_(e) x dx`
Now , put `((x)/(e))^(x)=t rArrx log _(e)((x)/(e))= log t`
`rArrx (log_(e)x-log_(e))=logt`
`rArr[x((1)/(x))+(log_(e)x-log_(e)e)]dx=(1)/(t)dt`
`rArr(1+log_(e)x-1)dx=(1)/(t)dtrArr(log_(e)x)dx=(1)/(t)dt`
Also , upper limit `x=erArrt=1` and lower limit `x=1rArrt=(1)/(e)`
`I=int_(1//e)^(1)(t^(2)-(1)/(t))*(1)/(t)dtrArrI=int_(1//e)^(1)(t-t^(2)) dt`
`I=[((t^(2))/(2)+(1)/(t))]_(1/(e))^(1)={((1)/(2)+1)-((1)/(2e^(2))+e)}=(3)/(2)-e-(1)/(2e^(2))`
207.

The value of `int_(0)^(oo)(logx)/(a^(2)+x^(2))dx` isA. `(2piloga)/(a)`B. `(pi log a)/(2a)`C. `pi loga`D. 0

Answer» Correct Answer - B
`I=int_(0)^(oo)(logx)/(a^(2)+x^(2))dx`
Put `x=(a^(2))/(y),dx=-(a^(2))/(y^(2))dy`
`therefore" "I=int_(oo)^(0)(log((a^(2))/(y)))/(a^(2)+(a^(4))/(y^(2)))((-a^(2))/(y^(2)))dy`
`" "=int_(oo)^(0)((loga^(2)-logy))/(a^(2)+y^(2))(-dy)`
`" "=log(a^(2))int_(0)^(oo)(dy)/(a^(2)+y^(2))-int_(0)^(oo)(logy)/(a^(2)+y^(2))dy`
`" "log(a^(2))(1)/(a)(tan^(-1)((y)/(a)))_(0)^(oo)-I`
`rArr" "2I=(2loga)/(a).(pi)/(2)`
`rArr" "I=(piloga)/(2a)`
208.

The value of the integral `int_(e^(-1))^(e^2)|((log)_e x)/x|dxi s``3/2`(b) `5/2`(c) 3(d) 5A. `3//2`B. `5//2`C. 3D. 5

Answer» Correct Answer - D
`int_(e^(-1))^(e^(2))|(log_(e)x)/(x)|dx=int_(e^(-1))^(1)|(log_(e)x)/(x)|dx-int_(1)^(e^(2))|(log_(e)x)/(x)|dx`
`["since , 1 is turning point for"|(log_(e)x)/(x)|" for + ve and - ve values"]`
`=-int_(e^(-1))^(1)(log_(e)x)/(x)dx+int_(1)^(e^(2))|(log_(e)x)/(x)|dx`
`=-(1)/(2)[(log_(e)x)^(2)]_(e^(-1))^(1)+(1)/(2)[(log_(e)x)^(2)]_(1)^(e^(2))`
`=-(1)/(2){0-(-1)^(2)}+(1)/(2)(2^(2)-0)=(5)/(2)`
209.

The integral `int_(2)^(4) (logx^(3))/(logx^(2)+log(36-12x+x^(2)))dx` is equal toA. 2B. 4C. 1D. 6

Answer» Correct Answer - C
210.

`int_(0)^(4)(|x-1|+|x-3|)dx`

Answer» Correct Answer - 10
211.

`int_(-2)^(4) f[x]dx`, where `[x]` is integral part of x.

Answer» Correct Answer - 3
212.

`int_(0)^(9)[sqrt(t)]dt`.

Answer» Correct Answer - 13
213.

`int_(0)^(pi)(x)/(1+sinx)dx`.

Answer» Correct Answer - `pi`
214.

Evaluate the following `int_(-1)^(1)|x|dx`.

Answer» Correct Answer - 1
215.

`int_(-pi//4)^(pi//2)(secxdx)/(1+2^(x))dx`.

Answer» Correct Answer - `ln(sqrt(2)+1)`
216.

The value of `int_(1)^(3) (|x-2|+[x])dx` is `([x]` stands for greatest integer less than or equal to x)A. 7B. 5C. 4D. 3

Answer» Correct Answer - A
217.

A farmer `F_1`has a land in the shape of a triangle withvertices at `P(0, 0), Q(1, 1)`and `R(2, 0)`. From this land, a neighbouring farmer `F_2`takes away the region which lies between the side `P Q`and a curve of the form `y=x^n (n >1)`. If the area of the region taken away by thefarmer `F_2`is exactly 30% of the area of ` P Q R`, then the value of `n`is _______.

Answer» Correct Answer - 4
218.

Let `f(x)` and `phi(x)` are two continuous function on `R` satisfying `phi(x)=int_(a)^(x)f(t)dt, a!=0` and another continuous function `g(x)` satisfying `g(x+alpha)+g(x)=0AA x epsilonR, alpha gt0`, and `int_(b)^(2k)g(t)dt` is independent of `b` If `f(x)` is an odd function, thenA. `phi(x)` is also an odd functionB. `phi(x)` is an even functionC. `phi(x)` is neither an even nor an odd functionD. for `phi(x)` to be an even function, it must satisfy `int_(0)^(a)f(x)dx=0`

Answer» Correct Answer - B
`f(x)` is an odd function. Thus, `f(x)=-f(-x)`
`phi(-x)=int_(0)^(-x)f(t)dt`
Put `t=-y`
`:. phi(-x)=int_(-a)^(x)f(-t)(-dt)`
`=int_(-a)^(x)f(t)dt=int_(-a)^(a)f(t)dt+int_(a)^(x)f(t)dt`
`=0+int_(a)^(x)f(t)dt=phi(x)`.
219.

Evaluating integrals dependent on a parameter: Differentiate I with respect to the parameter within the sign an integrals taking variable of the integrand as constant. Now evaluate the integral so obtained as a function of the parameter then integrate then result of get I. Constant of integration can be computed by giving some arbitrary values to the parameter and the corresponding value of I. The value of `(dI)/(da)` when `I=int_(0)^(pi//2) log((1+asinx)/(1-asinx)) (dx)/(sinx)` (where `|a|lt1`) isA. `(pi)/(sqrt(1-a^(2)))`B. `-pisqrt(1-a^(2))`C. `sqrt(1-a^(2))`D. `(sqrt(1-a^(2)))/(pi)`

Answer» Correct Answer - A
Let `I(a)=int_(0)^(pi//2) log((1+a sin x)/(1-a sinx))(dx)/(sinx)`
`(dI)/(da)=int_(0)^(pi//2) (2sinx)/(1-a^(2)sin^(2)x)(dx)/(x sin x)`
`=int_(0)^(pi//2)(2sec^(2)xdx)/(1+tan^(2)x-a^(2)tan^(2)x)`
`=int_(0)^(pi//2) (2sec^(2)xdx)/(1+tan^(2)x-a^(2)tan^(2)x)`
`=int_(0)^(oo) (2dt)/(1+(1-a^(2))t^(2))` (put `tan x=t`)
`=2/(sqrt(1-a^(2)))[tan^(-1)(tsqrt(1-a^(2)))]_(0)^(oo) =(pi)/(sqrt(1-a^(2))`
`:. I=pisin^(-1)a` [as `I(0)=0`]
220.

Evaluating integrals dependent on a parameter: Differentiate I with respect to the parameter within the sign an integrals taking variable of the integrand as constant. Now evaluate the integral so obtained as a function of the parameter then integrate then result of get I. Constant of integration can be computed by giving some arbitrary values to the parameter and the corresponding value of I. If `int_(0)^(pi)(dx)/((a-cosx))=(pi)/(sqrt(a^(2)-1))`, then the value of `(dx)/((sqrt(10)-cosx))` isA. `(pi)/81`B. `(7pi)/162`C. `(7pi)/81`D. none of these

Answer» Correct Answer - C
`int_(0)^(pi)(dx)/((a-cosx))=(pi)/(sqrt(a^(2)-1))`
Differentiating both sides with respect to `a` we get
`-int_(0)^(pi) (dx)/((a-cosx)^(2))=(-pia)/((a^(2)-1)^(3//2))`
Again differentiating with respect to `a`, we get
`2int_(0)^(pi) (dx)/((a-cosx)^(3))-(pi(1+2a^(2)))/((a^(2)-1)^(5//2))`
Putting `a=sqrt(10)`, we get `int_(0)^(pi) (dx)/((sqrt(10)-cosx)^(3))=(7pi)/81`
221.

Evaluating integrals dependent on a parameter: Differentiate I with respect to the parameter with in the sign an integrals taking variable of the integrand as constant. Now evaluate the integral so obtained as a function of the parameter then integrate then result of get I. Constant of integration can be computed by giving some arbitrary values to the parameter and the corresponding value of I. The value of `int_(0)^(1)(x^(a)-1)/(logx)dx` isA. `log(a-1)`B. `log(a+1)`C. `alog(a+1)`D. none of these

Answer» Correct Answer - B
Let `I(a)=int_(0)^(1)(x^(a)-1)/(logx)dx`……………..1
Differentiating w.r.t `a` keeping `x` is constant, we get
`(dI(a))/(da)=int_(0)^(1)((x^(a)-1)/(logx))dx`
`=int_(0)^(1)(x^(a)logx)/(logx)dx`
`=int_(0)^(1)x^(a)dx`
`=(x^(a+1))/(a+1)|_(0)^(1)=1/((a+1))`
Integrating both sides w.r.t `a` we get
`I(a)=log(a+1)+c`
For `a=0,1(0)=log1+c` [from equation 1]
`0=0+c`
`:. I=log(a+1)`
222.

Let `f(x)` and `phi(x)` are two continuous function on `R` satisfying `phi(x)=int_(a)^(x)f(t)dt, a!=0` and another continuous function `g(x)` satisfying `g(x+alpha)+g(x)=0AA x epsilonR, alpha gt0`, and `int_(b)^(2k)g(t)dt` is independent of `b` If `m,n` are even integers and `p,q epsilon R`, then `int_(p+n alpha)^(q+n alpha)g(t)dt` is equal toA. `int_(p)^(q)g(x)dx`B. `(n-m)int_(0)^(alpha)g(x)dx`C. `int_(p)^(alpha)g(x)dx+(n-m)int_(0)^(alpha)g(2x)dx`D. `int_(p)^(q)g(x)dx+((n-m))/2int_(0)^(2alpha)g(x)dx`

Answer» Correct Answer - D
`int_(p+m alpha)^(q+n alpha) g(t)dt=int_(p+m alpha)^(p)g(x)dx+int_(p)^(q)g(x)dx+int_(q)^(q+n alpha) g(x)dx`
`=-m/2 int_(0)^(2 alpha) g(x)dx+int_(p)^(q)g(x)dx+n/2 int_(0)^(2alpha) g(x)dx`
`=int_(p)^(q)g(x)dx+((n-m)/2)int_(0)^(2alpha) g(x)dx`
223.

Let `f(x)` and `phi(x)` are two continuous function on `R` satisfying `phi(x)=int_(a)^(x)f(t)dt, a!=0` and another continuous function `g(x)` satisfying `g(x+alpha)+g(x)=0AA x epsilonR, alpha gt0`, and `int_(b)^(2k)g(t)dt` is independent of `b` If `f(x)` is an even function, thenA. `phi(x)` is also an even functionB. `phi(x)` is an odd functionC. if `f(a-x)=-f(x)`, then `phi(x)` is an even functionD. if `f(a-x)=-f(x)` then `phi(x)` is an odd function

Answer» Correct Answer - D
If `f(x)` is an even function, then
`phi(-x)=-int_(-a)^(x)f(t)dt`
`=-int_(-a)^(a)f(t)dt-int_(a)^(x)f(t)dt`
`=-2int_(0)^(a)f(t)dt-int_(a)^(x)f(t)dt` [as `f(x)` is an even function]
Now `int_(0)^(a)f(t)dt=int_(0)^(a)f(a-t)dt`
`-int_(0)^(a)-f(t)dt` [using `f(a-x)=-f(x))`]
or `int_(0)^(a)f(t)dt=0`
or `phi(-x)=-int_(a)^(x)f(t)dt=-phi(x)`
Thus `phi(x)` is an odd function.
224.

The value of `int_0^1(x^4(1-x)^4)/(1+x^2) dx` isA. `(22)/(7)-pi`B. `(2)/(105)`C. 0D. `(71)/(15)-(3pi)/(2)`

Answer» Correct Answer - A
Let `I=int_(0)^(1)(x^(4)(1-x)^(4))/(1+x^(2))dx = int_(0)^(1)((x^(4)-1)(1-x)^(4)+(1-x)^(4))/((1+x^(2)))dx`
`=int_(0)^(1)(x^(2)-1)(1-x)^(4)dx+int_(0)^(1)((1+x^(2)-2x)^(2))/((1+x^(2)))dx`
`=int_(0)^(1){(x^(2)-1)(1-x)^(4)+(1+x^(2))-4x+(4x^(2))/((1+x^(2)))}dx`
`=int_(0)^(1){(x^(2)-1)(1-x)^(4)+(1+x^(2))-4x+4-(4)/(1+x^(2)))dx`
`=int_(0)^(1)(x^(6)-4x^(5)+5x^(4)-4x^(2)+4-(4)/(1+x^(2)))dx`
`=[(x^(7))/(7)-(4x^(6))/(6)+(5x^(5))/(5)-(4x^(3))/(3)+4x-4 tan^(-1)x]_(0)^(1)`
`=(1)/(7)-(4)/(6)+(5)/(5)-(4)/(3)+4-4((pi)/(4)-0)=(22)/(7)-pi`
225.

The valueof the integral `int_0^(1/2)(1+sqrt(3))/(((x+1)^2(1-x)^6)^(1/4))dx`is ______.

Answer» Correct Answer - 2
`I=int_(0)^(1//2)(1+sqrt(3))/(((x+1)^(2)(1-x)^(6))^(1//4))dx`
`=int_(0)^(1//2) ((1+sqrt(3))dx)/((1+x)^(2)[((1-x)^(6))/((1+x)^(6))]^(1//4)`
Put `(1-x)/(1+x)=t`
`implies(-2dx)/((1+x)^(2))=dt`
`:.I=int_(1)^(1//3)((1+sqrt(3))dt)/(-2t^(3//2))=(-(1+sqrt(3)))/2xx|(-2)/(sqrt(t))|_(1)^(1//3)`
`=(1+sqrt(3))(sqrt(3)-1)=2`
226.

`f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt` The value of `int_(0)^(pi//2) f(x)dx` isA. `1`B. `-2`C. `-1`D. `2`

Answer» Correct Answer - C
`f(x)=sinx+sin int_(-pi//2)^(pi//2) f(t)dt+cosx int_(-pi//2)^(pi//2) tf(t)dt`
`=sinx (1+int_(-pi//2)^(pi//2) f(t)dt)+cosx int_(-pi//2)^(pi//2) tf(t)dt`
`=Asinx+Bcosx`
Thus, `A=1+int_(-pi//2)^(pi//2) f(t)dt`
`=1+int_(-pi//2)^(pi//2) (Asint+Bcost)dt`
`=1+2Bint_(0)^(pi//2) cost dt`
`=A=1+2B` ............1
`B=int_(-pi//2)^(pi//2) tf(t)dt`
`=int_(-pi//2)^(pi//2)t(Asint+Bcost)dt`
`=2Aint_(0)^(pi//2) t sin tdt`
`=2A[-tcost+sint]_(0)^(pi//2)`
`:.B=2A`
From equations 1 and 2 we get
`A=-1//3, B=-2//3`
`:.f(x)=-1/3(sinx+2cosx)`
Thus, the range fo `f(x)` is `[-(sqrt(5))/3,(sqrt(5))/3]`
`f(x)=-1/2(sinx+2cosx)`
`=-(sqrt(5))/3 sin (x+tan^(-1)2)`
`=-(sqrt(5))/3cos(x-"tan"^(-1)1/2)`
`f(x)` in invertible if `-(pi)/2 le x=tan^(-1)2le(pi)/2`
or `-(pi)/2-tan^(-1)2 le xle (pi)/2 -tan^(-1) 2`
or `0lex-"tan"^(-1)1/2 le pi`
or `"tan"^(-1)1/2 le x le pi+"tan"^(-1)1/2`
or `pi le x-"tan"^(-1)1/2le 2pi`
or `x epsilon [pi+cot^(-1)2, 2pi +cot^(-1) 2]`
`int_(0)^(pi//2) f(x)dx=-1/3int_(0)^(pi//2) (sinx+2cosx)dx`
`=-1/3[-cosx+2sinx]_(0)^(pi//2) =-1`
227.

Let `u=int_0^oo (dx)/(x^4+7x^2+1` and `v=int_0^x (x^2dx)/(x^4+7x^2+1)` thenA. `pi//3`B. `pi//6`C. `pi//12`D. `pi//9`

Answer» Correct Answer - B
`u=int_(0)^(oo) (dx)/(x^(4)+7x^(2)+1)` and `v=int_(0)^(oo) (x^(2)dx)/(x^(4)+7x^(2)+1)`
`:. u+v=int_(0)^(oo) (1+x^(2))/(x^(4)+7x^(2)+1)dx`
`=int_(0)^(oo) (1/(x^(2))+1)/((x-1/x)^(2)+9)dx`
`=1/3["tan"^(-1)((x-1/x)/3)]_(0)^(oo)`
`=1/3[pi//2+pi//2]=pi//3`
`:.u+v=pi//3`
Now `u-v=int_(0)^(oo) (1-x^(2))/(x^(4)+7x^(2)+1)dx`
Let `x=1/t` or `x=-(dt)/(t^(2))`
`:.u-v=int_(oo)^(0)(1-1/(t^(2)))/(1/(t^(4))+7/(t^(2))+1)(1-1/(t^(2)))dt`
`=-int_(0)^(oo)(1-t^(2))/(t^(4)+7t^(2)+1) dt`
`=-(u-v)`
`:. u-v=0`
From 1 and 2, we get `u=v=pi//6`
228.

The values of `a`for which the integral `int_0^2|x-a|dxgeq1`is satisfied are`(2,oo)`(b) `(-oo,0)``(0,2)`(d) none of theseA. `[2,oo)`B. `(-oo,0]`C. `(0,2)`D. none of these

Answer» Correct Answer - A::B::C
For `ale0` given equation becomes
`int_(0)^(2)(x-a)dxge1` or `alt1/2`
So` ale0`
For `0 lt a lt 2`
`int_(0)^(2)|x-a|dxge1` or `int_(0)^(a)(a-x)dx+int_(a)^(2)(x-a)dxge1`
or `(a^(2))/2+2-2a+(a^(2))/2ge1`
or `a^(2)-2a+1ge0` or `(a-1)^(2)ge0`
So `0lt a lt 2`
For `a ge 2`.
`int_(0)^(2)|x-a|dxge1`
or `int_(0)^(2)(a-x)dxge1`
or `2a-2ge1` or `age3/2`
So `age2`
229.

`Iff(2-x)=f(2+x)a n df(4-x)=f(4+x)`for all `xa n df(x)`is a function for which `int_0^2f(x)dx=5,t h e nint_0^(50)f(x)dx`is equal to125 (b) `int_(-4)^(46)f(x)dx``int_1^(51)f(x)dx`(d) `int_2^(52)f(x)dx`A. `125`B. `int_(-4)^(46)f(x)dt`C. `int_(1)^(51)f(x)dx`D. `int_(2)^(52)f(x)dx`

Answer» Correct Answer - A::B::D
`f(2-x)=f(2+x),f(4-x)=f(4+x)`
or `f(4+x)=f(4-x)=f(2+2-x)=f(2-(2-x))=f(x)`
Thus, the period of `f(x)` is 4.
`int_(0)^(50)f(x)dx=int_(0)^(48)f(x)dx+int_(48)^(50)f(x)dx`
`=12 int_(0)^(4)f(x)dx+int_(0)^(2)f(x)dx`
[In second integral, replacing `x` by `x+48` and then using `f(x)=f(x+48)`]
`=12(int_(0)^(2)f(x)dx+int_(0)^(2)f(4-x)dx)+5`
`=12(int_(0)^(2)f(x)dx+int_(0)^(2)f(4+x)dx)+5`
`=24int_(0)^(2)f(x)dx+5=125`
`int_(-4)^(46)f(x)dx=int_(-4)^(-2)f(x)dx+int_(-2)^(-2+48)f(x)dx`
`=int_(0)^(2)f(x+4)dx+12int_(0)^(4)f(x)dx`
`=int_(0)^(2)f(x)dx+24int_(0)^(2)f(x)dx`
`=125`
also `int_(2)^(52)f(x)dx=int_(2)^(4)f(x)dx+int_(4)^(4+48)f(x)dx`
`=int_(0)^(2)f(4-x)dx+12int_(0)^(4)f(x)dx`
`=int_(0)^(2)f(4+x)dx+24int_(0)^(2)f(x)dx`
`=int_(0)^(2)f(x)dx+24int_(0)^(2)f(x)dx`
`=125`
`int_(1)^(51)f(x)dx=int_(1)^(3)f(x)dx+int_(3)^(3+48)f(x)dx`
`=int_(1)^(3)f(x)dx+12int_(0)^(4)f(x)dx`
`=int_(0)^(2)f(x+1)dx+24int_(0)^(2)f(x)dx`
`!=125`
230.

If `I_(n)=int_(0)^(pi//4) tan^(n)x dx, (ngt1` is an integer ), thenA. `I_(n)+I_(n-2)=1/(n+1)`B. `I_(n)+I_(n-2)=1/(n-1)`C. `I_(2)+I_(4),I_(6),…….` are in H.P.D. `1/(2(n+1))ltI_(n)lt1/(2(n-1))`

Answer» Correct Answer - B::C::D
`I_(n)=int_(0)^(pi//4)tan^(n)xdx`
`=int_(0)^(pi//4)tan^(n-2)xtan^(2)xdx`
`=int_(0)^(pi//4)sec^(2)x tan^(n-2)x dx-int_(0)^(pi//4) tan^(n-2) xdx`
`=int_(0)^(1)t^(n-2)dt=I_(n-2)`, where `t=tanx`
`:.I_(n)+I_(n-2)=((t^(n-1))/(n-1))_(0)^(1)=1/(n-1)`
Thus `I_(2)+I_(4)+I_(4)+I_(6)..............` are in H.P.
For `0lt xlt pi//4` we have `0 lt tan^(n-2)x`
So `0ltI_(n)ltI_(n-2)` or `I_(n)+I_(n+2)lt 2I_(n)ltI_(n)+I_(n-2)`
or `1/(n+1)lt 2I_(n) lt 1/(n-1)` or `1/(2(n+1)) lt I_(n) lt 1/(2(n-1))`
231.

If `I_(1)=int_(0)^(1)(dx)/(e^(x)(1+x))` and `I_(2)=int_(0)^(pi//4)(e^(tan^(7)theta)sintheta)/((2-tan^(2)theta)cos^(3)theta d theta`,then find the value of `(l_(1))/(l_(2))`.

Answer» Correct Answer - `2//e`
`I_(2)int_(0)^(pi//4)(e^(tan^(2)theta).tan theta)/((2-tan^(2)theta))sec^(2) d theta`
Put `tan^(2)theta=t`
`:.2 tan theta sec^(2) d theta =dt`
`:.I_(2)=1/2int_(0)^(1)(e^(t)dt)/((2-t))`
`=1/2 int_(0)^(1)(e^(1-t)dt)/(1+t)`
`=e/2int_(0)^(1)(dt)/(e^(t)(t+1))=e/2.I_(1)`
`:. (I_(1))/(I_(2))=2/e`
232.

If `f(x)` in inegrable over `[1,2]` then `int_(1)^(2) f(x) dx` is equal to :A. `underset(nrarroo)"lim"(1)/(n)underset(r=1)overset(n)sumf(r/n)`B. `underset(nrarroo)"lim"(1)/(n)underset(r=n+1)overset(2n)sumf(r/n)`C. `underset(nrarroo)"lim"(1)/(n)underset(r=1)overset(n)sumf((r+n)/n)`D. `underset(nrarroo)"lim"1/n underset(r=1)overset(2n)sumf(r/n)`

Answer» Correct Answer - B::C
233.

The intercepts on x-axis made by tangents to thecurve, `y=int_0^x|t|dt , x in R ,`which are parallel to the line `y""=""2x`, are equalto(1) `+-2`(2) `+-3`(3) `+-4`(4) `+-1`A. `+-1`B. `+-2`C. `+-3`D. `+-4`

Answer» Correct Answer - A
`y=int_(0)^(x)|t|dt`
Case I: If `xgt0`
`y=int_(0)^(x)tdt=[(t^(2))/2]_(0)^(x)=(x^(2))/2implies(dy)/(dx)=x=2` (given)
`implies x=2` and `y=2`
`:.` eqution of tangent is `(y-2)=2(x-2)`
or `y-2x+2=0`
Hence `x` intercept `=`
Case II: `xlt0`
`-y=int_(0)^(pi)-tdt=[(-t^(2))/2]_(0)^(x)=(-x^(2))/2`
`:.(dy)/(dt)=-x=2`
`:. x=-2,:.y=-2`,
`:.` equation iof tangent is `y+2=2(x+2)`
or `2x-y+2=0`
`:.x` intencept `=-1`
234.

Let `f(x) = int_(x)^(x+(pi)/(3))|sin theta|d theta(x in [0,pi])`A. `f(x)` is stricity increasing in this intervalB. `f(x)` is differentiable in this intervalC. Range of `f(x)` is `[2-sqrt(3)-1]`D. `f(x)` has a maxima at `x = pi/3`

Answer» Correct Answer - B::C::D
235.

Given an even function f defined and integrable everywhere and periodic with period 2.Let `g(x)=int_0^x f(t) dt and g(1)=A.`A. `g(2n) = 0` for every integer nB. `g(x)` is an even functionC. `g(x)` and `f(x)` have the same periodD. `g(x)` is an odd function

Answer» Correct Answer - A::B::C
236.

If `I = int_(0)^(2x)sin^(2)xdx`, thenA. `I = 2 underset(0)overset(pi)intsin^(2)xdx`B. `I = 4 underset(0)overset(pi//2)intsin^(2)xdx`C. `I = underset(0)overset(2pi)intcos^(2)xdx`D. `I = 8 underset(0)overset(pi//4)intsin^(2)xdx`

Answer» Correct Answer - A::B::C
237.

Evaluate : (i) `int_(0)^(1)sin^(-1)xdx` , (ii) `int_(1)^(2)(lnx)/(x^(2))dx`, (iii) `int_(0)^(1)x^(2)sin^(-1)xdx`.

Answer» Correct Answer - (i) `ln (sqrt(3))` , (ii) `7//6` , (iii) `3/8`
238.

`int_(0)^(1) x^(5)sin^(-1)xdx`

Answer» Correct Answer - `(pi)/(14)-(16)/(245)`
239.

`int_(0)^(9) x(a^(2)-x^(2))^(7/2)dx`

Answer» Correct Answer - `(a^(9))/(9)`
240.

` lim_(nrarr0) sum_(r=1)^(n) ((r^(3))/(r^(4)+n^(4)))` equals to :A. `ln 2`B. `1/2 ln 2`C. `1/3 ln 2`D. `1/4 ln 2`

Answer» Correct Answer - D
241.

`int_(0)^(2) sqrt(2-x)dx`.

Answer» Correct Answer - `(pi)/(2)`
242.

The value of `lim_(n rarroo) sum_(r=1)^(n)(1)/(sin{((n+r)pi)/(4n)}).(pi)/(n) ` is equal toA. `2ln(sqrt2-1)`B. `4 ln (sqrt2-1)`C. `4 ln (sqrt2+1)`D. `ln sqrt2`

Answer» Correct Answer - C
`S=underset(nrarroo)(lim)sum_(r=1)^(n)(pi)/(n).(1)/(sin{(pi)/(4)+(pir)/(4n)})`
`" "=pi int_(0)^(1)(dx)/(sin((pi)/(4)x+(pi)/(4)))=4log_(e)(sqrt2-1)`
243.

`lim_(nrarroo) {1/n+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+"......"+1/(8n)}`

Answer» Correct Answer - `3/8`
244.

`lim_(nrarroo) [(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+...+(1)/(8n)]` is equal toA. `(3)/(8)`B. `(1)/(4)`C. `(1)/(8)`D. None of these

Answer» Correct Answer - A
`underset(nrarroo)(lim)[(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+...+(1)/(8n)]`
`" "=underset(nrarroo)(lim)[(n^(2))/((n+0)^(3))+(n^(2))/((n+2)^(3))+(n^(2))/((n+2)^(3))+...+(n^(2))/((n+n)^(3))]`
`" "=underset(nrarroo)(lim)sum_(r=0)^(n)(n^(2))/((n+r)^(3))`
`" "=underset(nrarroo)(lim)sum_(r=0)^(n)(1)/(n)(1)/((1+(r)/(n)))`
`" "=int_(0)^(1)(dx)/((1+x^(3)))=[-(1)/(2(1+x)^(2))]_(0)^(1)`
`" "=-(1)/(2)((1)/(4)-1)=(3)/(8)`
245.

Area bounded by the region consisting of points `(x,y)` satisfying `y le sqrt(2-x^(2)), y^(2)ge x, sqrt(y)ge -x` isA. `pi/2`B. `pi`C. `2pi`D. `pi//4`

Answer» Correct Answer - A
246.

The value of `int_(pi/2)^( pi/2) (sin^(2)x)/(1+2^(x)) dx` is :A. `4pi`B. `(pi)/(4)`C. `pi/8`D. `pi/2`

Answer» Correct Answer - B
247.

Let `g(x) = cosx^(2), f(x) = sqrt(x)`, and `alpha, beta (alpha lt beta)` be the roots of the quadratic equation `18x^(2) -9pix + pi^(2) = 0`. Then the area (in sq. units) bounded by the curve `y = (gof) (x)` and the lines `x = alpha,x = beta` and `y = 0` isA. `1/2(sqrt(3) - sqrt(2))`B. `1/2(sqrt(3)-1)`C. `1/2(sqrt(3)-1)`D. `1/2(sqrt(3)+1)`

Answer» Correct Answer - C
248.

`int_(2-a)^(2+a)f(x)dxi se q u a lto[w h e r ef(2-alpha)=f(2+alpha)AAalpha in R]`2`int_2^(2+a)f(x)dx`(b) `2int_0^af(x)dx``2int_2^2f(x)dx`(d) none of theseA. `2int_(2)^(2+a)f(x)dx`B. `2int_(0)^(a)f(x)dx`C. `2int_(2)^(2)f(x)dx`D. none of these

Answer» Correct Answer - A
`f(2-alpha)=f(2+alpha)`
Thus, function is symmetric about the line `x=2`
`int_(2-a)^(2+a)f(x)dx=2int_(2)^(2+a)f(x)dx`
249.

If `f(x)`is continuous for all real values of `x ,`then`sum_(r=1)^nf(r-1+x)dxi se q u a lto``int_0^nf(x)dx`(b) `int_0^1f(x)dx``nint_0^1f(x)dx`(d) `(n-1)int_0^1f(x)dx`A. `int_(0)^(n)f(x)dx`B. `int_(0)^(1)f(x)dx`C. `nint_(0)^(1)f(x)dx`D. `(n-1)int_(0)^(1)f(x)dx`

Answer» Correct Answer - A
`sum_(r=1)^(n)int_(0)^(1)f(r-1+x)dx`
`=int_(0)^(1)f(x)dx+int_(0)^(1)f(1+x)dx+int_(0)^(1)f(2+x)dx+`……………
`+ int_(0)^(1) f(n-1+x)dx`
`= int_(0)^(1) f(x) dx+int_(1)^(2)f(x)dx+int_(2)^(3) f(x)dx+int(r-1)^(2)f(x)dx+`………………
`+int_(n-1)^(n)f(x)dx`.
`=int_(0)^(n)f(x)dx`.
250.

`int_(5/2)^5(sqrt((25-x^2)^3))/(x^4)dxi se q u a lto``pi/6`(b) `(2pi)/3``(5pi)/6`(d) `pi/3`A. `(pi)/6`B. `(2pi)/3`C. `(5pi)/6`D. `(pi)/3`

Answer» Correct Answer - D
`I=int_(5//2) ^(5)(sqrt((25-x^(2))^(3)))/(x^(4)) dx`
Let `x=5 sin theta`
`:.dx=5 cos theta d theta`
`:. I=int_(pi//6)^(pi//2)(sqrt((25-25sin^(2) theta)^(3)))/(5^(4)sin^(4) theta)`
`=int_(pi//6)^(pi//2) (5^(3)cos ^(3) theta. 5 cos theta)/(5^(4)sin^(4) theta) d theta`
`=int_(pi//6)^(pi//2) cot^(2) theta (cosec^(2) theta-1)d theta`
`=int_(pi//6)^(pi//2) cot^(2) theta cosec^(2) theta d theta -int_(pi//6)^(pi//2) cot^(2) theta d theta`
`=int_(pi//6)^(pi//2) cot^(2) theta cosec^(2) theta d theta -int_(pi//6)^(pi//2) (cosec^(2) theta -1)d theta`
`=[-(cot^(3) theta)/3+cot theta + theta]_(pi//6)^(pi//2)`
`=-0+0+(pi)/2-(-(3sqrt(3))/3+sqrt(3)+(pi)/6)=(pi)/3`