1.

The integral `int_(1)^(e){((x)/(e))^(2x)-((e)/(x))^(x)} "log"_(e)x` dx is equal toA. `(3)/(2)-e-(1)/(2e^(2))`B. `-(1)/(2)+(1)/(e)-(1)/(2e^(2))`C. `(1)/(2)-e-(1)/(e^(2))`D. `(3)/(2)-(1)/(e)-(1)/(2e^(2))`

Answer» Correct Answer - A
Let `I=int_(1)^(e){((x)/(e))^(2x)-((e)/x)^(x)} "log"_(e) x dx`
Now , put `((x)/(e))^(x)=t rArrx log _(e)((x)/(e))= log t`
`rArrx (log_(e)x-log_(e))=logt`
`rArr[x((1)/(x))+(log_(e)x-log_(e)e)]dx=(1)/(t)dt`
`rArr(1+log_(e)x-1)dx=(1)/(t)dtrArr(log_(e)x)dx=(1)/(t)dt`
Also , upper limit `x=erArrt=1` and lower limit `x=1rArrt=(1)/(e)`
`I=int_(1//e)^(1)(t^(2)-(1)/(t))*(1)/(t)dtrArrI=int_(1//e)^(1)(t-t^(2)) dt`
`I=[((t^(2))/(2)+(1)/(t))]_(1/(e))^(1)={((1)/(2)+1)-((1)/(2e^(2))+e)}=(3)/(2)-e-(1)/(2e^(2))`


Discussion

No Comment Found