Saved Bookmarks
| 1. |
If `f(x)`is continuous for all real values of `x ,`then`sum_(r=1)^nf(r-1+x)dxi se q u a lto``int_0^nf(x)dx`(b) `int_0^1f(x)dx``nint_0^1f(x)dx`(d) `(n-1)int_0^1f(x)dx`A. `int_(0)^(n)f(x)dx`B. `int_(0)^(1)f(x)dx`C. `nint_(0)^(1)f(x)dx`D. `(n-1)int_(0)^(1)f(x)dx` |
|
Answer» Correct Answer - A `sum_(r=1)^(n)int_(0)^(1)f(r-1+x)dx` `=int_(0)^(1)f(x)dx+int_(0)^(1)f(1+x)dx+int_(0)^(1)f(2+x)dx+`…………… `+ int_(0)^(1) f(n-1+x)dx` `= int_(0)^(1) f(x) dx+int_(1)^(2)f(x)dx+int_(2)^(3) f(x)dx+int(r-1)^(2)f(x)dx+`……………… `+int_(n-1)^(n)f(x)dx`. `=int_(0)^(n)f(x)dx`. |
|