Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

151.

Compute the integrals:`int_0^oof(x^n+x^(-n))logx(dx)/(1+x^2)`

Answer» Let `I=int_(0)^(oo) fx^(n)+x^(-n)In x (dx)/(1+x^(2))`
Let `t=1//x` or `x=1//t`. So `dx=-1/(t^(2))dt`.
Also when `xto0,t to oo`, when `xto oo, t to 0`. Thus,
`I=int_(0)^(oo) f(x^(n)+x^(-n)) In x (dx)/(1+x^(2))`
`=int_(oo)^(0)f(t^(-n)+t^(n))In (1/t)(-(dt)/(t^(2)))/(1+1/(t^(2)))`
`=-int_(0)^(oo) f(t^(n)+t^(-n))In (t)(dt)/(1+t^(2))`
`=-I`
or `2I=0` or `I=0`
152.

Evaluate `int_(-1)^(1) log ((2-x)/( 2+x)) dx `

Answer» Let `f(x)=log_(e)((2-x)/(2+x))dx rArr f(-x) = log_(e) ((2+x)/(2-x)) = - log_(e) ((2-x)/(2+x)) =-f(x)`
i.e., `f(x)` is odd function `:. underset(-1)overset(1)intlog_(e)((2-x)/(2+x)) dx = 0`
153.

Evaluate:`int_(pi//4)^(pi//4)log(sinx+cosx)dx`

Answer» Let `I=int_(-pi//4)^(pi//4)log{sqrt(2)sin(x+(pi)/4)}dx`
Putting `x+(pi)/4=theta, dx=d theta`, we get
`I=int_(0)^(pi//2)log(sqrt(2)sin theta)d theta`
`=1/2int_(0)^(pi//2)log 2 d theta +int_(0)^(pi//2) log sin theta d theta`
`=(1/4 pi log 2)-1/2 pi log 2`
`-1/4 pi log 2`
154.

Evaluate:`int_(-pi/2)^(pi/2)log{(a x^2+b x+c)/(a x^2-b x+c)(a+b)|sinx|}dx`

Answer» `I=int_(-pi//2)^(pi//2) log {(ax^(2)+bx+c)/(ax^(2)-bx+c)(a+b)|sinx|}dx`
`=int_(-pi//2)^(pi//2) log((ax^(2)+bx+c)/(ax^(2)-bx+c))dx+int_(-pi//2)^(pi//2) log (a+b)dx`
`+int_(-pi//2)^(pi//2) log|sinx|dx`……………1
`=I_(1)+I_(2)+I_(3)`
Now let `f(x)=log((ax^(2)+bx+c)/(ax^(2)-bx+c))`
or `f(-x)=log((ax^(2)-bx+c)/(ax^(2)+bx+c))`
`=-f(x)`
`:.I_(1)=int_(-pi//2)^(pi//2) f(x)dx=0`
`I_(2)=log(a+b)[x]_(-pi//2)^(pi//2)`
`=pi log(a+b)`
`I_(3)=int_(-pi//2)^(pi//2) log|sinx|dx`
`=2int_(0)^(pi//2)log|sinx|dx`
`=2int_(0)^(pi//2)logsinx dx`
`=2(-1/2pi log 2)`
Hence, from 1 we have
`I=0+pi log(a+b)-pi log 2`
`=pi log{(a+b)//2}`
155.

Evaluate:`int_(-1)^1(x^3+|x|+1)/(x^2+2|x|+1)dx`

Answer» Correct Answer - `2log_(e)2`
`I=int_(-1)^(1)(x^(3)+|x|+1)/(x^(2)+2|x|+1)dx`
`=int_(-1)^(1)(x^(3))/(x^(2)+2|x|+1)dx+int_(-1)^(1)(|x|+1)/(x^(2)+2|x|+1)dx`
`=0+2int_(0)^(1)((|x|+1)/(|x|+1)^(2))dx=2int_(0)^(1)(dx)/(1+x)`
`=2In(1+x)|_(0)^(1)=2In2`
156.

Compute the integrals:`int_0^oof(x^n+x^(-n))logx(dx)/x`

Answer» Here limits (reciprocal) and type of functions (reciprocal terms are present i.e. `x` and `1//x`) suggest that we must substitute `1//t` for `x`.
Let `t=1//x` or `x=1//t`. So `dx=-1/(t^(2))dt`.
Also when `xto 0, t to oo` when `xto oo, t to 0`. Thus,
`I=int_(0)^(oo) f(x^(n)+x^(-n)) In x(dx)/x`
`=int_(oo)^(0)f(t^(-n)+t^(n))In(1/t)(-(dt)/(t^(2)))/(1/t)`
`=-int_(0)^(oo) ft^(n)+t^(-n)In(t)(dt)/t`
`=-1`
or `2I=0` or `I=0`
157.

Prove that `int_(0)^(x)e^(xt)e^(-t^(2))dt=e^(x^(2)//4)int_(0)^(x)e^(-t^(2)//4)dt`.

Answer» Let `I=int_(0)^(x)e^(xt)e^(-t^(2))dt`
`=e^(x^(2)//4) int_(0)^(x)e^(-x^(2)//4)e^(xt)e^(-t^(2))dt`
`=e^(x^(2)//4)int_(0)^(x)e^(-(x^(2)//4-tx+t^(2)))dt`
`=e^(x^(2)//4)int_(0)^(x)e^(-x//2-t^(2))dt`
The result clearly suggests that we have to substitute `y//2` for `x//2-t`.
Then `dt=-dy//2`. Also when `t=0,y=x`, and when `t=x, y=-x`. Thus,
`I=e^(x^(2)/4)int_(x)^(-x)e^(-y^(2)//4)(-dy//2)`
`=(e^(x^(2)//4))/2int_(-x)^(x)e^(-y^(2)//4)dy`
`(e^(x^(2)//4))/2 2int_(0)^(x)e^(-y^(2)//4)dy` [`e^(y^(2)//4)` is an even function]
`=e^(x^(2)//4)int_(0)^(x)e^(-t^(2)//4)dt`
158.

Evaluate the following: `int_(-1//2)^(1//2)cos x "log" (1-x)/(1+x)dx`

Answer» Correct Answer - `0`
Since `cosx "log" (1-x)/(1+x)` is an odd function of `x`,
`int_(-1//2)^(1//2)cos x "log"(1-x)/(1+x)dx=0`
159.

Prove that `int_(0)^(2a)f(x)dx=int_(a)^(a)[f(a-x)+f(a+x)]dx`

Answer» `I=int_(0)^(a)[f(a-x)+f(a-x)]dx`
`=int_(0)^(a)f(a-x)dx+int_(0)^(a)f(a+x)dx`
`=int_(0)^(a)f(a-(a-x))dx+ubrace(int_(a)^(2a)f(t)dt)_(x+a=t)`
`-int_(0)^(a)f(x)dx+ubrace(int_(a)^(2a)f(x)dx)_("Change of dummy variable")`
`=int_(0)^(2a)f(x)dx`
160.

Evaluate the following: `int_(-pi)^(pi)(1-x^(2))xsinx cos^(2)x dx`

Answer» Correct Answer - `0`
Value `=0` since `(1-x^(2)) sinx cos^(2)x` is an odd function of `x`.
161.

Find the value of`int_0^1{(sin^(-1)x)//x}dx`

Answer» Correct Answer - `(pi)/2 log_(e)2`
`int_(0)^(1){(sin^(-1)x)//x}dx`
`[(sin^(-1))(logx)]_(0)^(1)-int_(0)^(1)1/(sqrt(1-x^(2)))logxdx`
`=0-lim_(xto0)(sin^(-1)x)/x(x log x)`
`-int_(0)^(pi//2)1/(sqrt(1-sin^(2)theta))(log sin theta) cos theta d theta`
`=-lim_(xto0) x log x -int_(0)^(pi//2) log sin theta d theta`
`=(pi)/2 log 2`
162.

`int_(-(3pi)/2)^(-pi/2) {(pi+x)^3+cos^2(x+3pi)}dx` is equal to (A) `pi/4-1` (B) `pi^4/32` (C) `pi^4/32+pi/2` (D) `pi/2`

Answer» Correct Answer - `pi//2`
Let `I=int_(-3pi//2)^(-pi//2)[(x+pi)^(3)+cos^(2)(x+3pi)]dx`
Put `x=pi=t`, so that `dx=dt`
when `x=-(3pi)/2, t=-(pi)/2`
When `x=-(pi)/2,t=(pi)/2`
`:.I=int_(-pi//2)^(pi//2) [t^(3)+cos^(2)(t+2pi)]dt`
`=int_(-pi//2)^(pi//2) [t^(3)+cos^(2)t]dt`
`=0+2int_(0)^(pi//2) cos^(2) t dt =int_(0)^(pi//2)(1+cos2t)dt`
`=(pi)/2+0=(pi)/2`
163.

show that the sum of the two integrals `int_(-4)^(-5) e^((x+5)^2)dx+3int_(1/3)^(2/3) e^(9(x-2/3)^2)dx` is zero

Answer» `I=int_(-4)^(-5)e^((x+5)^(2))dx+3int_(1//3)^(2//3)e^(9(x-2/3)^(2))dx`
`=int_(-4)^(-5)e^((x+5)^(2))dx+3int_(1//3)^(2//3)e^((3x-2)^(2))dx`
`=I_(1)+I_(2)`
Note that in both `I_(1)` and `I_(2)`, function has same form i.e. `e^(t^(2))`.
Also `e^(t^(2))` is no integrable.
Now in `I_(1)` let `x+t=y` and in `I_(2)`. Let `3x-2=-t`. Then
`I=int_(0)^(0)e^(y^(2))dy+int_(1)^(0)(-dt)=0`.
164.

`int_(pi)^((3pi)/2)(sin^(4)x+cos^(4)x)dx`

Answer» Correct Answer - `(3pi)/(8)`
165.

Evaluate:`int_(-pi)^(3pi)log(s e ctheta-t a ntheta)dtheta`

Answer» Let `I=int_(-pi)^(3pi)log(sec theta-tan theta)d theta`…………..1
Using the property `int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx`, we get
`I=int_(-pi)^(3pi)log[sec (2pi-theta)-tan(2pi-theta)]d theta`
`int_(-pi)^(3pi) log[sec theta+tan theta]d theta`.................2
Adding 1 and 2 we get
`2I=int_(-pi)^(3pi)log[(sec theta-tan theta )(sec theta+tan theta)]d theta`
`=int_(-pi)^(3pi) log(1)d theta=int_(-pi)^(3pi)0, d theta=0` or `I=0`
166.

Find the value of `ln(int_(0)^(1) e^(t^(2)+t)(2t^(2)+t+1)dt)`

Answer» Correct Answer - 2
167.

Evaluate:`int_(-pi)^pi(xsinx dx)/(e^x+1)`

Answer» Let `I=pi_(-pi)^(pi)(x sin x dx)/(e^(x)+1)`……………..1
Replacing `x` by `0-x` or `r-x`, we get
`I=int_(-pi)^(pi)((-x)sin(-x)dx)/(e^(-x)+1)=int_(-pi)^(pi)(e^(x)xsin xdx)/(e^(x)+1)`…………….2
Adding 1 and 2 we get `2I=int_(-pi)^(pi) x sin x dx`
or `I=int_(0)^(pi)xsinxdx`
`int_(0)^(pi)(pi-x)sin(pi-x)dx=int_(0)^(pi)x sin x dx-I` or `I=pi`
168.

Evaluate: `int_0^pi log(1+cosx)dx`

Answer» Correct Answer - `-pilog_(e)2`
`I=int_(0)^(pi)log(1+cosx)dx=int_(0)^(pi)log(2"cos"^(2)x/2)dx`
`=int_(0)^(pi)(log2+2"log cos"x/2)dx=pi log 2+2int_(0)^(pi)"log cos"x/2 dx`
`=pi log 2+2xx2int_(0)^(pi//2) log cos t dt, ` where `t=x/2` and `dx=2dt`
`pi log 2=4xx(-(pi)/2 log 2)`
`=-pi log 2`
169.

If `int_(1)^(0) (x)/(x+1+e^(x))dx` is equal to `-lnk` then find the value of `k`.

Answer» Correct Answer - 2
170.

Evaluate : `3int_(0)^(pi)(a^(2)sin^(2)x+b^(2)cos^(2)x)/(a^(4)sin^(2)x+b^(4)cos^(2)x)dx`, where `a^(2)+b^(2)=(3pi)/(4), a^(2) ne b^(2)` and `ab ne 0`

Answer» Correct Answer - 8
171.

`int_(pi//4)^(3pi//4)(dx)/(1+cosx)` is equal toA. 2B. `-2`C. `(1)/(2)`D. `-(1)/(2)`

Answer» Correct Answer - A
Let `I=int_(pi//4)^(3pi//4)(dx)/(1+cosx)` . . . (i)
`rArrI=int_(pi//4)^(3pi//4)(dx)/(1+cos(pi-x))`
`I=int_(pi//4)^(3pi//4)(dx)/(1+cosx)` . . . (ii)
On adding Eqs . (i) and (ii) , we get
`2I=int_(pi//4)^(3pi//4)((1)/(1+cosx)+(1)/(1-cosx))`dx
`rArr2I=int_(pi//4)^(3pi//4)((2)/(1-cos^(2)x))`dx
`rArrI=int_(pi//4)^(3pi//4)"cosec"^(2)xdx=[-cotx]_(pi//4)^(3pi//4)`
`=[-cot(3pi)/(4)+cot(pi)/(4)]=-(-1)+1=2`
172.

Evaluate: `int_0^(pi/2) sin^2x/(sinx+cosx)dx`

Answer» Let `I=int(sin^(2)xdx)/(sinx+cosx)`………………….1
`:.I=int_(0)^(pi//2)(sin^(2)(1/2pi-x)dx)/("sin"(1/2pi-x)+"cos"(1/2pi-x))`
`=int_(0)^(pi//2)(cos^(2)xdx)/(cosx+sinx)` ………..2
Now adding 1 and 2 we get
`2I=int_(0)^(pi//2)((sin^(2)x+cos^(2)x)dx)/(sinx+cosx)`
or `I=1/2int_(0)^(pi//2)(dx)/(sinx+cosx)`
`=1/(2sqrt(2))int_(0)^(pi//2)(dx)/(sin(x+1/4pi))`
`=(1/(2sqrt(2)))int_(0)^(pi//2)cosec(x+1/4)dx`
`=(1/(2sqrt(2)))[log{cosec(x+1/4pi)-cot(x+1/4pi)}]_(0)^(pi//2)`
`=(1//2sqrt(2))[log{cosec(1/2pi+1/4pi)-cot(1/2pi+1/4pi)}`
`-log{cosec(1/4pi)-cot(1/4pi)}]`
`=(1//2sqrt(2)[log{sec(1/4pi)+tan(1/4pi)}-log(sqrt(2)-1)]`
`=(1//2sqrt(2))[log(sqrt(2)+1)-log(sqrt(2)-1)]`
`=(1/(2sqrt(2)))log((sqrt(2)+1)/(sqrt(2)-1))`
173.

If `f(x)=(sinx)/xAAx in (0,pi],`prove that`pi/2int_0^(pi/2)f(x)f(pi/2-x)dx=int_0^pif(x)dx`

Answer» `int_(0)^(pi)f(x)dx=int_(0)^(pi)(sin x)/x dx`
Let `I=int_(0)^(pi//2)f(x)f((pi)/2-x)dx`
`=int_(0)^(pi//2)(sinx)/x ("sin"((pi)/2-x))/((pi)/2-x)dx`
`=int_(0)^(pi//2)(2sinx cosx)/(x(pi-2x)) dx`
`=int_(0)^(pi//2)(sin2x)/(x(pi-2x))dx`
Let `2x=t`. So `dt=2dx`
`:. I=int_(0)^(pi)(sint)/(t/2(pi-t)^(2))=int_(0)^(pi)(sint)/(t(pi-t))dt`
`=1/(pi) int_(0)^(pi) sin t(1/t+1/(pi-t))dt`
`=1/(pi) int_(0)^(pi)(sint)/t dt+1/(pi) int_(0)^(pi)(sint)/((pi-t))dt`
`=1/(pi) int_(0)^(pi) (sint)/t dt+1/(pi) int_(0)^(pi)(sin(pi-t))/(pi-(pi-t))dt`
`=1/(pi) int_(0)^(pi)(sint)/t dt+1/(pi) int_(0)^(pi) (sint)/t dt=2/(pi) (sint)/t dt`
or`(pi)/2 int_(0)^(pi//2)f(x)f(pi/2-x)dx=int_(0)^(pi)(sinx)/x dx`
174.

If `[x]`denotes the greatest integer less than or equal to `x ,`then find the value of the integral `int_0^2x^2[x]dxdot`

Answer» `int_(0)^(2)x^(2)[x]dx=int_(0)^(1)x^(2)[x]dx+int_(1)^(2)x^(2)[x]dx`
`=int_(0)^(1)x^(2)(0)dx+int_(1)^(2)x^(2)(1)dx`
`=0+int_(1)^(2)x^(2)dx=|(x^(3))/3|_(1)^(2)`
`=(8-1)/3=7/3`
175.

Let `g(x)=int_(0)^(x)f(t)dt`, where `f` is such that `1/2lef(t)le1`, for `tepsilon[0,1]` and `0lef(t)le1/2`, for `tepsilon[1,2]`. Then prove that `1/2leg(2)le3/2`.

Answer» `g(x)=int_(0)^(x)f(t)dt`
`:.g(2)=int_(0)^(2)f(t)dt=int_(0)^(1)f(t)dt+int_(1)^(2)f(t)dt`
Now `1/2lef(t)le1` for `tepsilon[0,1]`
`impliesint_(0)^(1)1/2dtleint_(0)^(1)f(t)dtleint_(0)^(1)1 dt`
`implies 1/2 le int_(0)^(1)f(t)dtle1`……………….1
Also `0lef(t)le1/2` for `tepsilon[1,2]`
`implies int_(1)^(2)0dt le int_(1)^(2)f(t)le int_(1)^(2)1/2dt`
`implies 0 le int_(1)^(2) f(t) dt le 1/2`...............2
Adding 1 and 2 we get.
`1/2 le int_(0)^(1)f(t)+int_(1)^(2)f(t)dtle3/2`
`implies1/2le int_(0)^(2)f(t)dtle3/2`
`implies1/2 le g(2)le3/2`
176.

Prove that`int_0^1tan^(-1)(1/(1-x+x^2))dx=2int_0^1tan^(-1)x dxdot`Hence or otherwise, evaluate the integral`int_0^1tan^(-1)(1-x+x^2)dx`

Answer» `int_(0)^(1)"tan"^(-1)1/(1-x+x^(2))dx=int_(0)^(1)"tan"^(-1)(x+(1-x))/(1-x(1-x))dx`
`=int_(0)^(1)[tan^(-1)x+tan^(-1)(1-x)]dx`
`=int_(0)^(1)tan^(-1)xdx+int_(0)^(1)tan^(-1)(1-x)dx`
`=int_(0)^(1)tan^(-1)xdx+int_(0)^(1)tan^(-1)tan^(-1)[1-(1-x)]dx`
`=2int_(0)^(1)tan^(-1)x dx`................1
Now, `I=int_(0)^(1)tan^(-1)(1-x+x^(2))dx`
`=int_(0)^(1)cot^(-1)(1/(1-x+x^(2)))dx`
`=int_(0)^(1)[(pi)/2-tan^(-1)(1/(1-x+x^(2)))]dx`
`=(pi)/2-2int_(0)^(1)x dx`[from equation 1]
`=(pi)/2-2{x tan^(-1) x-1/2 log(1+x^(2))}_(0)^(1)`
`=log_(e)2`
177.

`int_(0)^(1)e^(2x)e^(e^(x) ` dx =)A. `e^(e)(2e-1)`B. `e^(e)(e-1)`C. `e^(2e)(e-1)`D. none of these

Answer» Correct Answer - B
`I=int_(0)^(1)e^(2x)e^(e^(x))dx`
Let `e^(x)=1`
`rArr" "I=int_(0)^(e)te^(t)dt=(te^(t)-e^(t))_(1)^(e)=e^(e)(e-1)`
178.

The number of solution of the equation `int_(-2)^(1)|cos x|dx=0,0ltxlt(pi)/(2)`, is

Answer» Correct Answer - A
`int_(-2)^(x)|cosx|dx=int_(-2)^(-pi//2)|cos x|dx+int_(-pi//2)^(x)|cos x|dx`
`" "=int_(-2)^(-pi//2)-cosxdx+int_(-pi//2)^(x)cosxdx`
`" "1-sin 2+sinx+1`
`therefore" "int_(-2)^(x)|cos x|dx=0`
`rArr" "-1sin2+sinx+1=0`
`rArr" "sinx=sin2-2lt-1`
`therefore" No solution in "(0,(pi)/(2)).`
179.

For every function f (x) which is twice differentiable , these will be good approximation of `int_(a)^(b)f(x)dx=((b-a)/(2)){f(a)+f(b)}`, for more acutare results for ` cin(a,b),F( c) = (c-a)/(2)[f(a)-f( c)]+(b-c)/(2)[f(b)-f( c)]` When ` c= (a+b)/(2)` `int_(a)^(b)f(x)dx=(b-a)/(4){f(a)+f (b)+2 f ( c) }dx` Good approximation of `int_(0)^(pi//2)sinx dx , `isA. `pi//4`B. `pi(sqrt(2)+1)//4`C. `pi(sqrt(2)+1)//8`D. `(pi)/(8)`

Answer» Correct Answer - C
`int_(0)^(pi//2)sin x dx =((pi)/(2)-0)/(4)[sin +sin ((pi)/(2))+2 sin((0+(pi)/(2))/(2))]`
`=(pi)/(8)(1+sqrt(2))`
180.

If`Isum_(k=1)^(98)int_k^(k+1)(k+1)/(x(x+1))dx ,t h e n:``I(log)_e 99``I >(log)_e 99`(d) `I

Answer» Correct Answer - B::D
`I=sum_(k=1)^(98)int_(k)^(k+1)((k+1))/(x(x+1))dx`
Clearly , `Igtsum_(k=1)^(98)int_(k)^(k+1)((k+1))/((x+1)^(2))dx`
`rArrIgtsum_(k=1)^(98)(k+1)int_(k)^(k+1)(1)/((x+1))dx`
`rArrIgtsum_(k=1)^(98)(-(k+1))[(1)/(k+2)-(1)/(k+21)]rArrIgtsum_(k=1)^(98)(1)/(k+2)`
`rArrIgt (1)/(3)+ ...+(1)/(100)gt(98)/(100)rArrIgt(49)/(50)`
Also , `Igtsum_(k=1)^(98)int_(k)^(k+1)(k+1)/(x(k+1))dx=sum_(k=1)^(98)[log_(e)(k+1)-log_(e)k]`
`Igtlog_(e)99`
181.

Consider the statements : P : There exists some x IR such that f(x) + 2x = 2(1+x2) Q : There exists some x IR such that 2f(x) +1 = 2x(1+x) Then (A) both P and Q are true (B) P is true and Q is false (C) P is false and Q is true (D) both P and Q are false.A. both P and Q are trueB. P is true and Q is falseC. P is false and Q is trueD. both P and Q are false

Answer» Correct Answer - C
Here , `f(x) + 2x = (1 - x)^(2) * sin ^(2) x + x^(2)+2x` . . . (i)
where , P :` f (x) = 2x = 2 (1+x)^(2)` . . . (ii)
`:. 2 (1+x^(2))=(1-x)^(2) sin^(2) x+x^(2)+2x`
`rArr (1-x)^(2)sin^(2)x = x^(2)-2x+2`
`rArr(1-x)^(2)sin^(2)x = (1-x)+1`
`rArr (1 -x)^(2) cos^(2)=-1`
which is never possible .
`:.` P is false.
Again , let Q : h (x) = 2 f (x) + 1 - 2x ( 1+ x)
where , h (0) = 2 f (0) = 1 - 0 =1
h (1) = f (1) + 1 4 =- 3 , as h (0) h (1) `lt` 0
`rArr` h (x) must have a solution.
`:.` Q is true.
182.

Find the area of the region formed by `x^2+y^2-6x-4y+12 le 0`. `y le x` and `x le 5/2`.

Answer» Correct Answer - `(pi/6+1/8-(sqrt(3))/(8))` sq. units
183.

Find the area bounded by the curves `x = |y^(2)-1|` and `y = x- 5`

Answer» Correct Answer - `109/6` sq. units
184.

Find the area bounded by the curves `4 y = |4-x^(2)|, y = 7 - |x|`

Answer» Correct Answer - `32` sq. units
185.

Find the area bounded by the curves `y=-x^2+6x-5,y=-x^2+4x-3,`and the straight line `y=3x-15a n d`lying right to `x=1.`

Answer» Correct Answer - `73/6` sq. units
186.

The area of the figure bounded by right of the line `y = x + 1, y= cos x` and x-axis is :A. `1/2`B. `2/3`C. `5/6`D. `3/2`

Answer» Correct Answer - D
187.

Let `I_(n) = int_(0)^(1)(1-x^(3))^(n)dx, (nin N)` thenA. `3n I_(n) = (3n-1)I_(n-1) AA in ge 2`B. `(3n-1)I_(n) = 3n I_(n-1) AA n ge 2`C. `(3n-1)I_(n)= (3n+1)I_(n-1) AA n ge 2`D. `(3n+1)I_(n)=3nI_(n-1) AA n ge 2`

Answer» Correct Answer - D
188.

The area bounded by the x-axis and the curve `y = 4x - x^2 - 3` isA. `1/3`B. `2/3`C. `4/3`D. `8/3`

Answer» Correct Answer - C
189.

The area bounded by `y = 2-|2-x| and y=3/|x|` isA. `(4+3ln3)/(2)`B. `(4-3ln3)/(2)`C. `3/2 + ln 3`D. `1/2+ln3`

Answer» Correct Answer - B
190.

The area bounded by the curve `y^(2) = 4x` and the line `2x-3y+4=0` isA. `1/3`B. `2/3`C. `4/3`D. `5/3`

Answer» Correct Answer - A
191.

Area of region bounded by `x=0, y=0, x=2, y=2, y=lnx` isA. `6-4ln2`B. `4 ln 2-2`C. `2 ln 2-4`D. `6 - 2 ln 2`

Answer» Correct Answer - A
192.

If `int_(0)^(x^(2)(1+x))f(t)dt=x`, then the value of f(2) is.A. `1//2`B. `1//3`C. `1//4`D. `1//5`

Answer» Correct Answer - D
Differentiating both sides w.r.t. x, then
`f(x^(2)(1+x))xx(2x+3x^(2))=1`
At `x=1rArr f(2)=(1)/(5)`
193.

Let `f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0),` then `e^(-a)[f(x+1)-f(1+a)]=`A. `int_(0)^(x)=(e^(t))/((t+a))dt`B. `int_(1)^(x)(e^(t))/(t+a)dt`C. `e^(-a)int_(1+a)^(x+a)(e^(t))/(t)dt`D. `int_(0)^(x)(e^(t-a))/((t+a))dt`

Answer» Correct Answer - B::C
`e^(-a)[f(x+a)-f(1+a)]`
`" "=e^(-a)[int_(0)^(x+a)(e^(t).dt)/(t)-int_(0)^(1+a)(e^(t))/(t)dt]`
`" "=e^(-a)[int_(0)^(x+a)(e^(t).dt)/(t)+int_(1+a)^(0)(e^(t))/(t)dt]`
`" "=e^(-a)[int_(1+a)^(x+a)(d^t.dt)/(t)]`
`" "=e^(-a)int_(1)^(x)(e^(y+a))/(y+a).dy" "("Put, t"=y+a, dt=dy)`
`" "=int_(1)^(x)(e^(y).dy)/(t+a)`
`" "=int_(1)^(x)(e^(t).dt)/(t+a)`
194.

The value of `int_(-pi//2)^(pi//2)(sin^(2)x)/(1+2^(x))dx` isA. `pi//4`B. `pi//8`C. `pi//2`D. `4pi`

Answer» Correct Answer - A
`I=int_(-pi//2)^(pi//2) (sin^(2)x)/(1+2^(x))dx`…………….i
or `I=int_(-pi//2)^(pi//2) (sin^(2)(-x))/(1+2^(-x))dx`
or `I=int_(-pi//2)^(pi//2) (2^(x).sin^(2)x)/(2^(x)+1)dx`……………ii
Adding i and ii we get
`2I=int_(-pi//2)^(pi//2) sin^(2)xdx=2int_(0)^(pi//2) sin^(2)xdx`
`=int_(0)^(pi//2)(1-cos^(2)x)dx`
`=[x-(sin2x)/2]_(0)^(pi//2)=(pi)/2`
`:. I=(pi)/4`
195.

The value of `int_0^1(x^4(1-x)^4)/(1+x^2) dx` isA. `22/7-pi`B. `2/105`C. `0`D. `71/15-(3pi)/2`

Answer» Correct Answer - A
`int_(0)^(1)(x^(6)-4x^(5)+5x^(4)-4x^(2)+4-4/(1+x^(2)))dx`
`=[(x^(7))/7-(2x^(6))/3+x^(5)-(4x^(3))/3+4x]_(0)^(1)-pi`
`=1/7-2/3+1-4/3+4-pi=22/7-pi`
196.

The valued of `int_(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In 6-x^(2)))dx` isA. `1/4 In 3/2`B. `1/2 In 3/2`C. `In 3/2`D. `1/6 In 3/2`

Answer» Correct Answer - A
Put `x^(2)=t` and `2xdx=dt`
`:. I=1/2int_(In2)^(In3)(sint)/(sint+sin(In6-t)dt`
`=1/2int_(In2)^(In3)(sin(In6-t))/(sin(In6-t)+sint)dt`
`:.2I=1/2int_(In2)^(In3)1dt` or `I=1/4 In 3/2`
197.

If `y=int_(x^(2))^(x^(3))1/(logt)dt(xgt0)`, then find `(dy)/(dx)`

Answer» `y=int_(x^(2))^(x^(3))1/(logt)dt`
`:. (dy)/(dx)=1/(logx^(3)) d/(dx)(x^(3))-1/(logx^(2))d/(dx)(x^(2))`
`=(3x^(2))/(3logx)-(2x)/(2logx)`
`=(x^(2)-x)/(logx)`
198.

If `A(x+y)=A(x)A(y) and A(0) ne 0 and B(x)=(A(x))/(1+(A(x))^(2))`, thenA. `int_(-2010)^(2010)B(x)dx=int_(0)^(2011)B(x)dx`B. `int_(-2010)^(2011)B(x)dx-int_(0)^(2010)B(x)dx=int_(0)^(2011)B(x)dx`C. `int_(-2010)^(2011)B(x)dx=0`D. `int_(-2010)^(2010)(2B(-x)-B(x))dx=2int_(0)^(2010)B(x)dx`

Answer» Correct Answer - B::D
`A(x+y)=A(x)A(y)`
`rArr" "A(0+0)=A(0)A(0)`
`rArr" "A(0)=1`
Put `y=-x,` we get
`A(0)=A(x)A(-x)" (i)"`
`B(-x)=(A(-x))/(1+(A(-x))^(2))`
`=((1)/(A(x)))/(1+(1)/((A(x))^(2)))`
`=(A(x))/(1+(A(x))^(2))`
= B(x)
Thus, B(x) is even.
`int_(-2010)^(2011)B(x)dx=int_(-2010)^(2010)B(x)dx+int_(2010)^(2011)B(x)dx`
`=2int_(0)^(2010)B(x)dx+int_(2010)^(2011)B(x)dx`
`=int_(0)^(2010)B(x)dx+int_(0)^(2011)B(x)dx`
199.

`int_(pi//4)^(3pi//4)(dx)/(1+cosx)` is equal toA. `-2`B. 2C. 4D. `-1`

Answer» Correct Answer - B
Let `I=int_(pi//4)^(3pi//4)(dx)/(1+cosx)=int_(pi//4)^(3pi//4)(1-cosx)/(1-cos^(2)x)dx`
`= int_(pi//4)^(3pi//4)(1-cosx)/(sin^(2)x)dx`
`=int_(pi//4)^(3pi//4)("cosec"^(2)x-"cosec" x cot x)dx`
`=[-cotx+"cosec"x]_(pi//4)^(3pi//4)`
`[(1+sqrt(2))-(-1+sqrt(2))]=2`
200.

`int_(0)^(1) sqrt((1-x)/(1+x)) dx=?`A. `(pi)/(2)+1`B. `(pi)/(2)-1`C. `-1`D. 1

Answer» Correct Answer - B
`I=int_(0)^(1)sqrt((1-x)/(1+x))dx=int_(0)^(1)(1-x)/(sqrt(1+x^(2)))`
`=int_(0)^(1)(1)/(sqrt(1-x^(2)))dx-int_(0)^(1)(x)/(sqrt(1-x^(2)))dx`
`=[sin^(-1)x]_(0)^(1)+int_(0)^(1)(t)/(t)dt`
where , `t^(2)=1-x^(2)rArrtdt =-x dx]`
`=(sin^(-1)-sin^(-1)0)+[t]_(1)^(0)=pi//2-1`