1.

If`Isum_(k=1)^(98)int_k^(k+1)(k+1)/(x(x+1))dx ,t h e n:``I(log)_e 99``I >(log)_e 99`(d) `I

Answer» Correct Answer - B::D
`I=sum_(k=1)^(98)int_(k)^(k+1)((k+1))/(x(x+1))dx`
Clearly , `Igtsum_(k=1)^(98)int_(k)^(k+1)((k+1))/((x+1)^(2))dx`
`rArrIgtsum_(k=1)^(98)(k+1)int_(k)^(k+1)(1)/((x+1))dx`
`rArrIgtsum_(k=1)^(98)(-(k+1))[(1)/(k+2)-(1)/(k+21)]rArrIgtsum_(k=1)^(98)(1)/(k+2)`
`rArrIgt (1)/(3)+ ...+(1)/(100)gt(98)/(100)rArrIgt(49)/(50)`
Also , `Igtsum_(k=1)^(98)int_(k)^(k+1)(k+1)/(x(k+1))dx=sum_(k=1)^(98)[log_(e)(k+1)-log_(e)k]`
`Igtlog_(e)99`


Discussion

No Comment Found