1.

If `y=int_(x^(2))^(x^(3))1/(logt)dt(xgt0)`, then find `(dy)/(dx)`

Answer» `y=int_(x^(2))^(x^(3))1/(logt)dt`
`:. (dy)/(dx)=1/(logx^(3)) d/(dx)(x^(3))-1/(logx^(2))d/(dx)(x^(2))`
`=(3x^(2))/(3logx)-(2x)/(2logx)`
`=(x^(2)-x)/(logx)`


Discussion

No Comment Found