Saved Bookmarks
| 1. |
Evaluate:`int_(-pi)^(3pi)log(s e ctheta-t a ntheta)dtheta` |
|
Answer» Let `I=int_(-pi)^(3pi)log(sec theta-tan theta)d theta`…………..1 Using the property `int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx`, we get `I=int_(-pi)^(3pi)log[sec (2pi-theta)-tan(2pi-theta)]d theta` `int_(-pi)^(3pi) log[sec theta+tan theta]d theta`.................2 Adding 1 and 2 we get `2I=int_(-pi)^(3pi)log[(sec theta-tan theta )(sec theta+tan theta)]d theta` `=int_(-pi)^(3pi) log(1)d theta=int_(-pi)^(3pi)0, d theta=0` or `I=0` |
|