1.

`int_(pi//4)^(3pi//4)(dx)/(1+cosx)` is equal toA. 2B. `-2`C. `(1)/(2)`D. `-(1)/(2)`

Answer» Correct Answer - A
Let `I=int_(pi//4)^(3pi//4)(dx)/(1+cosx)` . . . (i)
`rArrI=int_(pi//4)^(3pi//4)(dx)/(1+cos(pi-x))`
`I=int_(pi//4)^(3pi//4)(dx)/(1+cosx)` . . . (ii)
On adding Eqs . (i) and (ii) , we get
`2I=int_(pi//4)^(3pi//4)((1)/(1+cosx)+(1)/(1-cosx))`dx
`rArr2I=int_(pi//4)^(3pi//4)((2)/(1-cos^(2)x))`dx
`rArrI=int_(pi//4)^(3pi//4)"cosec"^(2)xdx=[-cotx]_(pi//4)^(3pi//4)`
`=[-cot(3pi)/(4)+cot(pi)/(4)]=-(-1)+1=2`


Discussion

No Comment Found