Saved Bookmarks
| 1. |
Prove that`int_0^1tan^(-1)(1/(1-x+x^2))dx=2int_0^1tan^(-1)x dxdot`Hence or otherwise, evaluate the integral`int_0^1tan^(-1)(1-x+x^2)dx` |
|
Answer» `int_(0)^(1)"tan"^(-1)1/(1-x+x^(2))dx=int_(0)^(1)"tan"^(-1)(x+(1-x))/(1-x(1-x))dx` `=int_(0)^(1)[tan^(-1)x+tan^(-1)(1-x)]dx` `=int_(0)^(1)tan^(-1)xdx+int_(0)^(1)tan^(-1)(1-x)dx` `=int_(0)^(1)tan^(-1)xdx+int_(0)^(1)tan^(-1)tan^(-1)[1-(1-x)]dx` `=2int_(0)^(1)tan^(-1)x dx`................1 Now, `I=int_(0)^(1)tan^(-1)(1-x+x^(2))dx` `=int_(0)^(1)cot^(-1)(1/(1-x+x^(2)))dx` `=int_(0)^(1)[(pi)/2-tan^(-1)(1/(1-x+x^(2)))]dx` `=(pi)/2-2int_(0)^(1)x dx`[from equation 1] `=(pi)/2-2{x tan^(-1) x-1/2 log(1+x^(2))}_(0)^(1)` `=log_(e)2` |
|