1.

Prove that `int_(0)^(2a)f(x)dx=int_(a)^(a)[f(a-x)+f(a+x)]dx`

Answer» `I=int_(0)^(a)[f(a-x)+f(a-x)]dx`
`=int_(0)^(a)f(a-x)dx+int_(0)^(a)f(a+x)dx`
`=int_(0)^(a)f(a-(a-x))dx+ubrace(int_(a)^(2a)f(t)dt)_(x+a=t)`
`-int_(0)^(a)f(x)dx+ubrace(int_(a)^(2a)f(x)dx)_("Change of dummy variable")`
`=int_(0)^(2a)f(x)dx`


Discussion

No Comment Found