Saved Bookmarks
| 1. |
Evaluate the definite integral:`int_(-1/(sqrt(3)))^(1/(sqrt(3)))((x^4)/(1-x^4))cos^(01)((2x)/(1+x^2))dxdot` |
|
Answer» Let `I=int_(-1//sqrt(3))^(1//sqrt(3))(x^(4))/(1-x^(4))cos^(-1)((2x)/(1+x^(2)))dx` `=int_(1//sqrt(3))^(1//sqrt(3))((-x)^(4))/(1-(-x)^(4))cos^(-1)((2(-x))/(1+(-x)^(2)))dx` `=int_(-1//sqrt(3))^(1//sqrt(3))(x^(4))/(1-x^(4))[pi-cos^(-1)((2x)/(1+x^(2)))]dx` `=pi int_(-1//sqrt(3))^(1/sqrt(3))(x^(4))/(1-x^(4))dx-I` `:.2I=2pi int_(0)^(1//sqrt(3))(x^(4))/(1-x^(4))dx` `:.I=pi int_(0)^(1//sqrt(3))[-1+1/(1-x^(4))]dx` `=-pi int_(0)^(1//sqrt(3))dx+(pi)/2 int_(0)^(1//sqrt(3))[1/(1-x^(2))+1/(1+x^(2))]dx` `=-(pi)/(sqrt(3))+(pi)/2[(-1/2 log_(e)|(1-x)/(1+x)|+tan^(-1)x)]_(0)^(1//sqrt(3))` `=-(pi)/(sqrt(3))+(pi)/2(1/2log_(e)|(sqrt(3)+1)/(sqrt(3)-1)|+(pi)/6)` |
|