Saved Bookmarks
| 1. |
Evaluate `int_(0)^(1)(e^(-x)dx)/(1+e^(x))` |
|
Answer» Correct Answer - `log(1+e)-1/3-log2` `I=int_(0)^(1)(e^(-x) dx)/(1+e^(x))=int_(0)^(1)(dx)/(e^(x)(1+e^(x)))` Put `e^(x)=z` `:.e^(x)dx=dz` `implies dx=(dz)/(e^(x))=(dz)/z` `impliesI=int_(1)^(e)(dz)/(z^(2)(1+z))` `=int_(1)^(e)(1/(1+z)-(z-1)/(z^(2)))dz` `=|log_(e)(1+z)-log_(e)z-1/z|_(1)^(e)` `=(log_(e)(1+e)-log_(e) e-1/e)-(log_(e)2-log_(e)1-1)` `=log(1+e)-1/e-log2` |
|