1.

`int_(-1)^(2)[([x])/(1+x^(2))]dx`, where [.] denotes the greatest integer function, is equal toA. `-2`B. `-1`C. zeroD. none of these

Answer» Correct Answer - B
`[x]=0,AAxepsilon[0,1)`
For `x epsilon[1,2),[x]=1`
`:.([x])/(1+x^(2))=1/(1+x^(2))lt 1AAxepsilon[1,2)` or `[([x])/(1+x^(2))]=0`
For `x epsilon[-1,0),[x]=-1` or `([x])/((1+x)^(2))=-1/(1+x^(2))`
Clearly, `2ge1 +x^(2)gt1AAxepsilon[-1,0)`
or `1/2le 1(1+x^(2))lt 1`
or `-1/2ge - 1/(1+x^(2))gt-1`
or `[([x])/(1+x^(2))]=-1AAxepsilon[-1,0)`
Thus, the given integral `=-int_(-1)^(0)dx=-1`.


Discussion

No Comment Found