1.

`int_(0)^(pi//4) log (1+tan x) dx =?`

Answer» Correct Answer - `(pi)/(8) (log2)`
Let `I=int_(0)^(pi//4) log (1+tanx )dx` . . . (i)
`I=int _(0)^(pi//4)log (1+tan((pi)/(4)-x))dx` `:. I= int _(0)^(pi//4)log (1+(1-tanx)/(1+tanx))dx`
`=int_(0)^(pi//4) log ((1+tanx+1-tanx)/(1+tanx))dx`
`I= int_(0)^(pi//4)log((2)/(1+tanx))dx rArrI=int _(0)^(pi//4)log 2 dx - I`
`rArr 2 I = (pi)/(4) log 2 rArr I=(pi)/(8) (log2)`


Discussion

No Comment Found