Saved Bookmarks
| 1. |
`L e tJ=int_(-5)^(-4)(3-x^2)tan(3-x^2)dxa n dK=int_(-2)^(-1)(6-6x+x^2)``tan(6x-x^2-6)dxdotT h e n(J+K)`equals _____ |
|
Answer» We have `J=int_(-5)^(-4)(3-x^(2))tan(3-x^(2))dx` Put `(x+5)=t`. Then `J=int_(0)^(1)(3-(t-5)^(2))tan(3-(t-5)^(2))dt` `=int_(0)^(1)(-22+10t-t^(2))tan(-22+10t-t^(2))dt` Now `K=int_(-2)^(-1)(6-6x+x^(2))tan(6x-x^(2)-6)dx` Put `(x+2)=z`. Then `K=int_(0)^(1)(6-6(z-2)+(z-2)^(2))tan(6(z-2)-(z-2)^(2)-6)` `=int_(0)^()(22-10z+z^(2))tan(-22+10z-z^(2))dz` Hence `(J+K)=0` |
|