1.

Evaluate:`int_0^oolog(x+1/x)(dx)/(1+x^2)`

Answer» Putting `x=tan theta, dx=sec^(2)theta d theta`, given integral becomes
`I=int_(0)^(pi//2)(log(tan theta+cot theta))/(1+tan^(2) theta) sec^(2) theta d theta`
`=int_(0)^(pi//2) log (sin theta//cos theta +cos theta // sin theta )d theta`
`=int_(0)^(pi//2)log{1//(sin theta cos theta)}d theta`
`=-int_(0)^(pi//2) log sin theta d theta -int_(0)^(pi//2) log cos theta d theta`
`=-2(-1/2pi log 2)=pi log 2`


Discussion

No Comment Found