Saved Bookmarks
| 1. |
Evaluate:`int_0^(pi/2)xcotx dx` |
|
Answer» Integrating by parts, taking `cotx` as second function given integral becomes. `I=[x log sin x]_(0)^(pi//2)-int_(0)^(pi//2)log sinx dx` `=0-lim_(xto oo) (xlog sin x)-int_(0)^(pi//2)log sin x dx=1/2 pilog 2` as `lim_(xto oo) x log sinx=lim_(xto oo) ((log sinx)/(1//x))` `=lim_(xto oo)((cotx))/(-1//(x^(2)))` `=lim_(xto oo) ((-x^(2))/(tanx))` `=lim_(xto oo) (-x xx x/(tanx))` `=0xx1=0` |
|