Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

351.

If `f(x)=sqrt(x^2+a x+4)`is defined for all `x ,`then find the values of `adot`

Answer» Correct Answer - [-4, 4]
`f(x)=sqrt(x^(2)+ax+4)` is defined for all x. Therefore,
`x^(2)+ax+4 ge 0` for all `x`
or `D=a^(2)-16 le 0`
or `a in [-4,4]`
352.

Solve the following system of equations `3x - 4y + 5z = 0, x + y - 2z = 0, 2x + 3y + z = 0`

Answer» D=`[[3,-4,5],[1,1,-2],[2,3,1]]`
=`3(1-(-6)+4(5)+5*1`
=46.
`D!=0`
`D_x=D_y=D_z=0`
`x=D_x/D=0,y=0,z=0`
`(x,y,z)=(0,0,0)`.
353.

If `bar(DA) =bar(a); bar(AB)=bar(b)` and `bar(CB)=kbar(a)` where `k>0` and `X,Y` are the midpoint of `DB` and `AC` respectively such that `|bar(a)|=17` and `|bar(XY)|=4`, then k=

Answer» `X=(veca+vecb)/2`
`Y=(veca+vecb+veca(1-k))/2`
`Y=veca+vecb/a-(vecaK)/2`
`|XY|=4`
`XY=veca+vecb/2-(vecaK)/2-(veca+vecb)/2`
`=veca/2-(vecak)/2`
`=veca/2(1-k)`
`|XY|=4=(|veca|(1-k))/2`
`4=(17(1-k))/2`
`1-k=8/17`
`k=9/17`.
354.

The sum of all the real roots of equation `x^4-3x^3-2x^2-3x+1=0` is

Answer» `x^4-3x^3-2x^2-3x+1 = 0`
`(x^2-4x+1)(x^2+x+1) = 0`
Now, roots of equation,`x^2-4x+1 = 0`,
`x = (4+-sqrt(16-4))/2 = 2+-sqrt3`
These are real roots.
Now, roots of equation,`x^2+x+1 = 0`,
`x = (-1+-sqrt(1-4))/2 = -(1+-sqrt(-3))/2`
These are imaginary roots.
`:.` Sum of real roots ` = (2+sqrt3)+(2-sqrt3) = 4`
355.

If 0

Answer» x=[x]+{x}
[x]=x-{x}
`[x/2]+[x/3]+[x/5]=(31x)/30`
`x/2-{x/2}+x/3-{x/3}+x/5-{x/5}=(31x)/30`
`x/2+x/3+x/5-[(x/2)+(x/3)+(x/5)]=(31x)/30`
`(3x)/30=t`
`t=0`
x is multiple of 2,3,5
LCM of(2,3,5)=30
x=30m
`0<30m<1000`
n=1to33
33 possibles values of x.
356.

Find domain of the function `10^x+10^y=10`

Answer» `10^y=10-10^x`
`10^y=10(1-10^(x-1))`
`log_10 10^y=log10(1-10^(x-1))`
`y=log_10 10+log_10(1-10^(x-1))`
`y=1+log_10(1-10^(x-1))`
`log_10(1-10^(n-1))`
`1-10^(x-1)>0`
`1>10^(x-1)`
`10>10x`
`10^x<10^1`
`x<1`
Domain=`(-oo,1)`.
357.

`lim_(n->oo) {1/1.3+1/3.5+1/5.7+.....+1/((2n+1)(2n+3))` is equal to

Answer» `lim_(n->oo)[1/2((3-1)/(1.3))+1/2((5-3)/(3.5))+...+1/2(((2n+3)-(2n+1))/((2n+1)(2n+3)))]`
`lim_(h->oo)[1/2(1-1/3_+(1/3-1/5)+(1/5-1/7)+...+(1/(2n+1)-1/(2n+3))]`
`lim_(h->oo)1/2(1-1/(2n+3))`
`lim_(h->oo)1/2((2n+2)/(2n+3))`
`lim_(h->oo)1/2((2n(1+1/n))/(h(2+3/n)))`
`1/2(2(1+0))/(2+0)`
`1/2`.
358.

If ` tan (pi/12 - x) , tan (pi/12) , tan (pi/12 + x) ` in G.P. then sum of all the solutions in [0,314] is `k pi`. Find k

Answer» `tan^2pi/12=tan(pi/12-x)*tan(pi/12+x)`
`tan^2pi/12=((tanpi/12+tanx)/(a-tanpi/12*tanx))*((tanpi/12-tanx)/(1+tanpi/12tanx))`
`tan^(2pi/12)=(tam^2pi/12-tan^2x)/(1-tan^2pi/12*tan^2x)`
`tan^2(pi/12)(1-tan^2pi/12*tan^2x)=tan^2pi/12-tan^2x`
`tan^2pi/12-tan^4pi/12tan^2x=tan^2pi/12-tan^2x`
`tan^2x-tan^4pi/12tan^2x=0`
`tan^2x[1-tan^4pi/12]=0`
`tan^2x=0`
`tanx=0`
`x=npi`
`=pi[1+2+3+..+99]`
`=pi(99*100)/2`
`=4950pi`
`=kpi`
`k=4950`.
359.

Number of solution of `tan(2x)= tan(6x)` in `(0,3pi)` is :

Answer» y=tan6x
`[0-pi)=>2-1=`
`[pi-2pi)=2`
`(2pi-3pi)=2`
`(0,3pi)=>5`.
360.

If `x=2+2^(2/3)+2^(1/3)`, then the value of `x^3-6x^2+6x` is:

Answer» `x-2=2^(2/3)+2^(1/3)`
`(x-2)^3=(2^(2/3)+2^(1/3))^3`
`x^3-8-6x^2+12x=4+2+6(2^(2/3)+2^(1/3))`
`x^3-6x^2+!2x-8=6+6(x-2)=6+6x-12`
`x^3-6x^2+6x-8=-6`
`x^3-6x^2+6x=2`.
361.

Find value of ` Sin ( tan^(-1) x)`

Answer» Let `tan^-1x = theta`
Then, `x = tan theta`
`=>tan theta = x/1`
`:. sin theta = x/sqrt(x^2+1^2)`
`=>sin theta = x/sqrt(x^2+1)->(1)`
Now, `sin(tan^-1x ) = sin theta`
From (1),
`sin(tan^-1x ) = x/sqrt(x^2+1)`
362.

Two men A and B start with velocities v at the same time from the junction of two roads inclined at `45^@` to each other.If they travel by different roads,find the rate at which they are being separated.

Answer» With the given details, we can create a right angle triangle.
Please refer to video for the figure.
From the figure,
`(OP)/(OQ) = tan45^@ = 1`
`:. OP = OQ`
Let `OP = OQ = k`
Then, `PQ = sqrt(k^2+k^2) = ksqrt2`
Now, in right angle triangle `OPQ`,
`OP^2+OQ^2 = PQ^2`
As we have to find the rate of separation, we will differentiate above equation.
So, `2OP(d(OP))/dt+2OQ(d(OQ))/dt = 2PQ(d(PQ))/dt`
As we are given velocities of two person as `v`,
`:. (d(OP))/dt = (d(PQ))/dt = v`
So, our equation becomes,
`=>2kv+2k(d(OQ))/dt = 2sqrt2kv`
`=>v+(d(OQ))/dt =sqrt2v`
`=> (d(OQ))/dt = (sqrt2-1)v`
So, rate of separation will be `(sqrt2-1)v`.
363.

`int 1/(x( 6 ( log x)^2 + 7 log x + 2) dx`

Answer» `logx=t`
`1/xdx=dt`
`intdt/(6t^2+7t+2)=1/6intdt/(t^2+7/6t+2/6)`
`1/6intdt/((t+7/12)^2-(1/12)^2)`
`ln((t+1/2)/(t+2/3))+c`
`ln((2t+1)/(3t+2))+c`
`=log((2logx+1)/(3logx+2)*3/2)+c`
`=log((6logx+3)/(6logx+4))+c`.
364.

If the `4^(th)` term in the expansion of `( 2 + 3x/8)^10` has the maximum value, then the values of x for which this will be true is :

Answer» `T_4` in `(2+(3x)/8)^10 = C(10,3)(2^7)((3x)/8)^3`
`T_3` in `(2+(3x)/8)^10 = C(10,2)(2^8)((3x)/8)^2`
`T_5` in `(2+(3x)/8)^10 = C(10,4)(2^6)((3x)/8)^4`
Now, we are given `T_4` has the maximum value.
So,`T_4 gt t_3`
`=> C(10,3)(2^7)((3x)/8)^3 gt C(10,2)(2^8)((3x)/8)^2`
`=>C(10,3)((3x)/8) gt C(10,2)(2)`
`=>(10**9**8)/(3**2**1)((3x)/8) gt (10**9)/(2**1)(2)`
`45x gt 90=> x gt 2`
Also, `T_5 lt T_4`
`=> C(10,4)(2^6)((3x)/8)^4 lt C(10,3)(2^7)((3x)/8)^3`
`=>C(10,4)((3x)/8) lt C(10,3)(2)`
`=>(10**9**8**7)/(4**3**2**1)((3x)/8) lt (10**9**8)/(3**2**1)(2)`
`=>630x/8 lt 240`
`=>x lt 192/63 => x lt 64/21`
So, `2 lt x lt 64/21`, is the value for which `x` will be true.
365.

`int e^(cotx) (cos x - cosec x ) dx` is equal to :

Answer» `int e^(cotx) (cosx-cosecx) dx`
Let `y = e^(cotx)sinx`
`:. dy/dx = e^cotx cosx +sinx e^cotx(-cosec^2x)`
`=> dy/dx = e^cotx cosx - sinx e^cotx(cosec x)`
`=> dy/dx = e^cotx(cos-cosecx)`
Now, integrating both sides,
`y+c = int e^(cotx) (cosx-cosecx) dx`
`=> int e^(cotx) (cosx-cosecx) dx = e^(cotx)sinx+c`
So, option `D` is the correct option.
366.

Solve `||x-1| -5| ge 2`.

Answer» `||x-1| -5| ge 2`
i.e., `|x-1| -5| le -2 " or " |x-1| -5| ge 2`
i.e., `|x-1| le 3 " or " |x-1| ge 7`
i.e., `-3 le x-1 le 3" or " x-1 le -7 " or " x-1 ge 7`
i.e., `-2 le x le 4 " or " x le -6 " or " x ge 8 `
i.e., `x in (-oo,-6]cup [-2,4] cup [8,oo)`
367.

Consider a function `f:[0,pi/2]->R` given by `f(x)=sin x and g:[0,pi/2]->R` given by `g(x)=cos x.` Show that f and g are one-one, but `f+g` is not one-one.

Answer» one-one:
`a_1!=a_2`, then `f(a_1)!xf(a_2)`
`f(a_1)=f(a_2)`,then `(a_1=a_2)`
`sqrt2(sinx/sqrt2+cosx/sqrt2)`
`=sqrt2(sinxcos45+cosxsin45)`
`=sqrt2(sin(A+B)`
`=sqrt2sin(x+45)`
`a_1!=a_2`
`f(g)(a_1)=(f+g)(a_2)`
this function is one-one.
368.

Let `X={1,2,3,4,5,6,7,8,9}.` Let R be a relation in `X` given by `R_1={(x,y):x-y` is divisible by `3}` and `R_2` another on `X` given by `R={(x,y):(x,y)uu{1,4,7}} or {x,y} uu {2,5,8} or {x,y} uu {3,6,9}}` Show that `R_1=R_2.`

Answer» Here, `X = {1,2,3,4,5,6,7,8,9}`
`R_1 = {(x,y): x-y` is divisible by `3}`
As, `x-y` is divisible by `3`.
`x-y = 3n` where `n in N`
`=>x= y+3n`
`y=1, x = 4` when `n=1`
`y=1, x = 7` when `n=2`
`y=4, x = 7` when `n=1`
`y=4, x = 1` when `n=-1`
`y=7, x = 4` when `n=-1`
`y=7, x = 1` when `n=-2`
`:. (x,y) = {(1,4),(1,7),(4,7),(4,1),(7,4),(7,1)}`
`:.(x,y) sub {1,4,7}`
Similarly, ` (x,y) = {(2,5),(2,8),(5,8),(5,2),(8,5),(8,2)}`
`:.(x,y) sub {2,5,8}`
Similarly, ` (x,y) = {(3,6),(3,9),(6,9),(6,3),(9,6),(9,3)}`
`:.(x,y) sub {3,6,9}`
`:. R_1 = {(x,y):(x,y) sub {1,4,7}} or {(x,y):(x,y) sub {2,5,8}} or {(x,y):(x,y) sub {3,6,9}}`
We are given,
`:. R_2 = {(x,y):(x,y) sub {1,4,7}} or {(x,y):(x,y) sub {2,5,8}} or {(x,y):(x,y) sub {3,6,9}}`
`:. R_1 = R_2`
369.

238. EXAMPLE If the normals at three points P, Q and R in a s be the focus, meet point O and prove that SP. SQ. SR a SO As in the previous question we know that the normals a the points (ami, am 1), (am am2) and (am3, 2am3) meet in the point (h k), if m1 1m2 1m3 0 2a -h m2m3 m3m1 m1m2 (2)

Answer» `y=mx-2am-am^3`
`(am_1^2,-2am_1)(am_2^2,-2am_2)(am_3^2,-2am_3)`
`am^3+2am-mh+k=0`
`m_1+m_2+m_3=0`
`m_1m_2+m_1m_3+m_2m_3=(2a-h)/a`
`m_1m_2m_3=-k/a`
=SP*SQ*SR
`=(am_1^2+a)(am_2^2+a)(am_3^2+a)`
`=a^3(m_1^2+1)(m_2^2+!)(m_3^2+1)`
`=a^3(m_1^2*m_2^2m_3^2+m_1^2m_2^2+m_1^2m_3^2+n_1^2+m_3^2m_3^2+m_2+m_3^2+1)`
`=a^3[(h^2-2ah+a^2)/a^2]`
`a^3/a^2(h-a)^2`
`a(OS)^2`.
370.

If f(x) = `(x^(2))/(1 + x^(2))` , then the value of f{f(2)} is :A. `(9)/(41)`B. `(25)/(41)`C. `(16)/(25)`D. `(16)/(41)`

Answer» Correct Answer - d
371.

Match the following lists:

Answer» Correct Answer - `a to r,s; b to p,q,r,s; c to s; d to p`
a. `tan^(-1)((2x)/(1-x^(2))) in (-(pi)/(2),(pi)/(2))`
`or 2 tan^(-1)x in (-(pi)/(2),(pi)/(2))`
`or tan^(-1)x in (-(pi)/(4),(pi)/(4))`
`or tan^(-1)x in (-1,1)`
b. `f(x)=sin^(-1)(sinx) and g(x)=sin(sin^(-1)x)`
`f(x)` is defined if `sin x in [-1,1]` which is true for all `x in R`.
But g(x) is defined for only `x in [-1,1]`.
Hence, `f(x)` and g(x) are identical if `x in [-1,1]`.
c. `f(x)=log_(x^(2))25 and g(x)=log_(x)5`
`f(x)` is defined ` AA x in R - {0,1} and g(x) ` is defined for `(0, oo) -{1}.`
Hence, `f(x)` and g(x) are identical if `x in (0,1) cup (1,oo).`
d. `f(x)=sec^(-1)x+"cosec"^(-1)x,g(x)=sin^(-1)x+cos^(-1)x`
`f(x)` has domain `R -(-1,1) and g(x)` has domain [-1, 1]
Hence, both the functions are identical only if `x=-1,1.`
372.

If f(x) = x - `(1)/(x)` , then the value of f(x) + `f((1)/(x))` is :

Answer» Correct Answer - a
373.

Let `E_(1)={x in R :x ne 1 and (x)/(x-1) gt 0} and E_(2)={x in E_(1):sin^(-1)(log_(e)((x)/(x-1))) " is real number"}` (Here, the inverse trigonometric function `sin^(-1)x` assumes values in `[-(pi)/(2),(pi)/(2)]`.) Let `f:E_(1) to R` be the function defined by `f(x)=log_(e)((x)/(x-1)) and g:E_(2) to R` be the function defined by `g(x)=sin^(-1)(log_(e)((x)/(x-1))) .` The correct option isA. `a to s, b to q, c to p, d to p`B. `a to r, b to r, c to u, d to t`C. `a to s, b to q, c to p, d to u`D. `a to s, b to r, c to u, d to t`

Answer» Correct Answer - A
`E_(1):(x)/(x-1) gt 0`
`implies x in (-oo ,0) cup (1,oo)`
Also `E_(2) : -1 lt log_(e)((x)/(x-1)) le 1`
`implies (1)/(e) le (x)/(x-1) le e`
`implies (1)/(e) le 1 +(1)/(x-1) le e`
`implies (1)/(e)-1 le (1)/(x-1) le e-1`
`implies (x-1) in (-oo, (e)/(1-e)] cup [(1)/(e-1),oo)`
`implies x in (-oo, (e)/(1-e)] cup [(1)/(e-1),oo)`
Now, `(x)/(x-1) in (0, oo)-{1} AA x in E_(1)`
`implies log_(e) ((x)/(x-1)) in (-oo,oo)-{0}`
`implies sin^(-1)(log_(e)((x)/(x-1))) in [-(pi)/(2),(pi)/(2)]-{0}`
`("considering "log_(e) ((x)/(x-1)) in [-1,1]-{0})`
374.

If f(x) = ` log_(e) ((1-x)/(1+x))` , then `f((2x)/(1 + x^(2)))` is equal to :A. `[f(x)]^(2)`B. 2f(x)C. 4f(x)D. None of these

Answer» Correct Answer - b
375.

`(sin 70^@ + cos 40^@)/(cos 70^@ + sin 40^@)`

Answer» `(sin70^@ +cos40^@)/(cos70^@+sin40^@)`
We know, `sintheta = cos(90-theta)`. So, our expression becomes
`(cos20^@+cos40^@)/(sin20^@+sin40^@)`
As ,`cosA+cosB = 2cos((A+B)/2)cos((A-B)/2)`
and `sinA+sinB = 2sin((A+B)/2)cos((A-B)/2)`
Our expression becomes,
`=(2cos((20^@+40^@)/2)cos((20^@-40^@)/2))/(2sin((20^@+40^@)/2)cos((20^@-40^@)/2))`
`=cot30^@ = sqrt3`
376.

Solve the differential equation`sinxdy/dx+3y=cosx`

Answer» `dy/dx+(3y)/sinx=cosx/sinx`
`P(x)=3/sinx`
`Q(x)=cotx`
`IF=e^(intp(x)dx)=e^(3/sinx) dx=e^(3intcosecx)`dx
`=e^(ln(1+cosecx+cotx)^(-3)`
`y*IF=intIF*Q(x) dx`
`=int-dt/t^3`
`=-(t^(-4+1)/(-4+1))`
`y*if=1/(3(cosecx+cotx)^3`
`y=1/((cosecx+cotx)^3^3(cosecx+cotx)^3)`
`y=1/3`.
377.

A and C lie on a circle center O with radius `5sqrt2`. The point B inside the circle is such that angle `/_`ABC = 90, AB = 6, BC = 2. Find `sqrt(OB^2 -1)`

Answer» A and C lie on a circle with radius `5*sqrt2` as radius.There is a point B inside the circle making `/_ABC = 90^circ`We need to find, `sqrt(OB^2 - 1)`Let center of circle be O.`:. OA = 5*sqrt2`Given,AB = 6BC = 2`AC^2 = AB^2 + BC^2``= 36 + 4 = 40 rArr AC = 2*sqrt10`Let us draw a perpendicular from O on line AB cutting it at D and equal to length y (say).BD = x (say)Now we will draw lines parallel to OD and BD in order to form a rectangle OEBD. OB will be the diagonal of this rectangle.In `/_ OEC``OC^2 = OE^2 + EC^2``rArr 50 = x^2 + (2+y)^2``rArr 50 = x^2 + 4 + 4y + y^2``rArr 46 = x^2 + y^2 + 4y` .....(1)In `/_ OAD``OA^2 = AD^2 + OD^2``rArr 50 = y^2 + (6-x)^2``rArr 50 = x^2 + y^2 - 12y + 36``rArr 14 = x^2 + y^2 - 12x` ......(2)Solving (1) & (2)`x = 1 , y = 5``OB^2 = x^2 + y^2 = 26`Hence, `sqrt( OB^2 - 1) = sqrt(25) = 5`
378.

If `f9x)=a x^7+b x^3+c x-5,a , b , c`are real constants, and `f(-7)=7,`then the range of `f(7)+17cosxi s``[-34 ,0]`(b) `[0, 34]``[-34 ,34]`(d) none of theseA. [-34, 0]B. [0, 34]C. [-34, 34]D. None of these

Answer» Correct Answer - A
`f(7)+f(-7)= -10`
`or f(7)= -17`
`or f(7)+17 cosx= -17 +17 cosx`
which has range `[-34,0]`.
379.

If `f(a-x)=f(a+x) " and " f(b-x)=f(b+x)` for all real x, where `a, b (a gt b gt 0)` are constants, then prove that `f(x)` is a periodic function.

Answer» `f(x)=f(b+(x-b))`
` =f(b-(x-b))`
`=f(2b-x)`
`=f(a+(2b-x-a))`
`=f(a-(2b-x-a))`
`=f(2a-2b+x)`
Hence, `f(x)` is periodic with period `2a-2b.`
380.

If `547.527/0.0082=x`, then the value of `547527/82` is:

Answer» `547.527/0.0082=x`
`x=5475270/82`
`547527/82=x/10`.
381.

An alloy of zinc and tin contains 37% zinc by weight. Find the weight of zinc which must be added to 400 kg of this alloy if the final percentage of zinc is to be 70.

Answer» Total weight of alloy `= 400 kg`
Let we add `x` kg zinc to make its weight `70%` in the alloy.
Then, total alloy `= 400+x`
Total zinc after adding `x` kg` = 37**400/100+x`
`:. (400+x)**70/100 = (37**4)+x`
`=>2800+7x = 1480+10x`
`=>3x = 1320=> x = 440kg`
So, zinc of weight of `440` kg should be added to get the desired mixture.
382.

If R is a relation on a finite set having n elements, then the number of relations on A is

Answer» let there be a relation such that (a,b) is a relation.
now a has `n` options and b also has `n`options.
o total no. of ordered pairs=`nxxn=n^2`
now each ordered pair ha 2 options, either it willl be a realtion or not so=>no. of relations=>`2^(n^2)`
383.

If `e^x + e^(f(x)) = e` then domain of f(x) is

Answer» `e^x+e^y=e`
`e^y=e-e^x`
taking log both side
`loge^y=ln(e-e^x)`
`yloge=log(e-e^x)`
`y=f(x)=log(e-e^x)`
`e-e^x>0`
`e>e^x`
`lne>lne^x`
`1>x`
`x in (-oo,1)`
384.

The range of `x^2+4y^2+9z^2-6yz-3xz-2xy` is

Answer» `f=x^2+4y^2+9z^2-6yz-3xz-2xy`
`f=x^2+(2y)^2+(3z)^2-(2y)(3z)-(x)(3z)-(2y)(x)`
`f=1/2*(2a^2+2b^2+2c^2-2ab-2bc-2ca)`
`f=1/2{(x-2y)^2+(2y-3z)^2+(x-3z)^2}`
`f>=0`
`f[0,oo)`.
385.

`int (sin theta+cos theta)/sqrt(1+sin2 theta) d theta`

Answer» `int(sintheta+costheta)/sqrt(1+sin2theta)d theta`
`int(sintheta+costheta)/sqrt(sin^2theta+cos^2theta+2sinthetacostheta)d theta`
`int(sintheta+costheta)/sqrt((sintheta+costheta)^2) d theta`
`int(sintheta+costheta)/(sintheta+costheta)d theta`
`int1d theta`
`theta+C`.
386.

Write explicit functions of `y`defined by the following equations and also find the domains of definitions of the given implicit functions:`x+|y|=2y`(b) `e^y-e^(-y)=2x``10^x+10^y=10`(d) `x^2-sin^(-1)y=pi/2`

Answer» (i) `x+|y|=2y`
If `y ge 0, ` we have ` x+y=2yimpliesx`
`implies y=x,x ge 0`
If `y lt 0, ` we have ` x-y=2yimplies y=(x)/(3)`
`implies y=(x)/(3), x lt 0`
Hence, `y={((x)/(3)", "x lt 0),(x", "x ge 0):}`
(ii) `e^(y) -e^(-y)=2x`
`implies e^(2y)-2xe^(y)-1=0 " " `(Multiplying by `e^(y)`)
`implies e^(y)=(2x+-sqrt(4x^(2)+4))/(2)=x+-sqrt(x^(2)+1)`
`implies e^(y)=x+sqrt(x^(2)+1)" (as "sqrt(x^(2)+1) gtx, " then " x-sqrt(x^(2)+1) lt 0, " which is not possible)" `
`implies y=log_(e)(x+sqrt(x^(2)+1))`
(iii) `10^(x)+10^(y)=10`
`implies 10^(y)=10-10^(x)`
`implies y=log_(10)(10-10^(x))`
387.

Set A has m distinct elements and set B has n distinct elements. Then how many different mappings from set A to set B can be formed?

Answer» Since each element(preimage) in set A can corresponds to any one of the n elements (images) in set B, the number of mappings can be formed is `n xx n xx n … m" times "=n^(m)`.
388.

If A is set of different triangles in the plane and B is set of all positive real numbers. A relation R is defined from set A to set B such that every element of set A is associated with some number in set B which is measure of area of triangle. Is this relation as function?

Answer» Two or more different triangles may have same area.
But area of each triangle is unique.
This means each element (triangle) of set A is associated with unique value (Area) of set B.
So, given relation is function.
389.

If `f(x)=(a-n^(n))^(1//n)` where `a gt 0` and `n in N` , then `f[f(x)]` is equal to :A. xB. aC. `x^(n)`D. None of these

Answer» Correct Answer - a
390.

A function `f : RrarrR` is defined as `f(x) = x^(2) +2`, then evaluate each of the following : (i) `f^(-1)(-6)` (ii) `f^(-1)(18)`

Answer» (i) `f^(-1)(-6)={x in R : f (x) =-6}`
= `{x in R : x^(2) + 2 =- 6}`
= `{x in R : x^(2) =- 8} = phi` Ans.
(ii) `f^(-1)(18)= {x in R : f(x) = 18}`
= `{x in : x^(2) + 2 = 18 } = {x in R : x^(2) = 16 }`
= `{x in R : x = +- 4 } = {-4,4}`. Ans.
391.

If `f:R -> R, g:R -> R` defined as `f(x) = sin x and g(x) = x^2`, then find the value of `(gof)(x) and (fog)(x) `and also prove that `gof != fog`.

Answer» (fog) (x) = f[(g(x)]
= `f(x^(2)) = sin x^(2)`Ans.
and (gof)(x)= g[f(x)]
=g(sinx) = `(sinx)^(2)= sin^(2) x` Ans.
Therefore, fog `ne` gof . Hence Proved.
392.

If `f(x)=|x+1|` then the true statement from the following is :A. `f(x^(2))={f(x)}^(2)`B. `f(x+y)=f(x)+f(y)`C. `f(|x|)=|f(x)|`D. None of these

Answer» Correct Answer - d
393.

Function `f: R to R and g : R to R ` are defined as `f(x)=sin x and g(x) =e^(x)` . Find (gof)(x) and (fog)(x).

Answer» Correct Answer - `(gof)(x)=e^(sinx), (fog)(x)=sine^(x)`
394.

Let `f: R ->R`be defined as `f(x) = 10 x + 7`. Find the function `g: R ->R`such that`gof=fog=1_R`

Answer» In `F: R rarr R`, f(x) = 10 x +7
Let x,y `in`R
and f(x)=f(y)
`rArr 10 x +7 =10 y +7`
`rArr 10x = 10 y `
`rArr x=y`
`therefore` f is one - one
Again let f(x) =y where `y in R`
`rArr 10x +7 =y rArr x(y-7)/(10)i R`
`therefore` f is onto
Now `(fog )(x) = f((y-7)/(7))`
`=10 ((y-7)/(10))+7=y`
`therefore go f =I_R "and" fog =I_R`
`therefore g: R rarr R ` is defined as g(y) `=(y-7)/(10)`
395.

If `f(x)=3x+|x|`, then the value of `f(3x)+f(-x)-f(x)` is:A. `3(x+|x|)^(2)`B. `3(x+|x|)`C. `(x-|x|)^(3)`D. None of these

Answer» Correct Answer - b
396.

If `A={x:(pi)/(6) lt x lt (pi)/(3)}` and `f(x) =cosx-x(1+x),` then `f(A)` is equal to :A. `[(pi),(6),(pi)/(3)]`B. `[(-pi)/(3),(-pi)/(6)]`C. `[(1)/(2)-(pi)/(3)(1+(pi)/(3)),(sqrt(3))/(2)-(pi)/(6)(1+(pi)/(6))]`D. None of these

Answer» Correct Answer - c
397.

`int1/(y(1-ay))`dy

Answer» `int1/(y(1-ay))dy`
`Let 1/(y(1-ay))=A/y+B/(1-ay)`
`1=A(1-ay)+By`
`-aA+B=0`
`A=1`
`B=a`
`intdy/(y(1-ay))=intdy/y+int(ady)/(1-ay)`
`=lny+a(-1/a)ln(1-ay)`
`=lny-ln(1-ay)`
`=ln(y/(1-ay))+c`.
398.

Find the domain of the function :`f(x)=3/(4-x^2)+(log)_(10)(x^3-x)`

Answer» Correct Answer - `(-1,0) cup (1,2) cup (2,oo)`
`f(x)=(1)/(4-x^(2))+log_(10)(x^(3)-x)`
`f` is defined when
`x ne +-2 " and " x^(3) -x gt 0`
or `x ne +-2 " and "x(x^(2)-1) gt 0`
or `x ne +-2, x in (-1,0) cup (1,oo)`
or `x in (-1,0) cup (1,2) cup (2,oo)`
399.

Find the domain of the function :`f(x)=(log)_((x-4))(x^2-11 x+24)`

Answer» Correct Answer - `(8,oo)`
`f(x)=log_(x-4)(x^(2)-11x+24).`
`f(x)` is defined if
`x-4 gt 0 " and " ne 1 " and " x^(2)-11x+24 gt0`
or `x gt 4 " and " ne 5 " and " (x-3)(x-8) gt 0`
i.e., `x gt 4 " and " ne 5 " and " x lt 3 " or " x gt 8`
or ` x gt 8`
or domain`(y)=(8,oo)`
400.

The interval (-1, 1) is the range ofA)`x/(1+|x|)` B) `cos x - sin x ` C) `x^4+4x^3+1` D) `|x|/(1+x)`

Answer» x=-3/4
`(3/4)/(1-(3/4))=3`
Option A is correct.