1.

If the `4^(th)` term in the expansion of `( 2 + 3x/8)^10` has the maximum value, then the values of x for which this will be true is :

Answer» `T_4` in `(2+(3x)/8)^10 = C(10,3)(2^7)((3x)/8)^3`
`T_3` in `(2+(3x)/8)^10 = C(10,2)(2^8)((3x)/8)^2`
`T_5` in `(2+(3x)/8)^10 = C(10,4)(2^6)((3x)/8)^4`
Now, we are given `T_4` has the maximum value.
So,`T_4 gt t_3`
`=> C(10,3)(2^7)((3x)/8)^3 gt C(10,2)(2^8)((3x)/8)^2`
`=>C(10,3)((3x)/8) gt C(10,2)(2)`
`=>(10**9**8)/(3**2**1)((3x)/8) gt (10**9)/(2**1)(2)`
`45x gt 90=> x gt 2`
Also, `T_5 lt T_4`
`=> C(10,4)(2^6)((3x)/8)^4 lt C(10,3)(2^7)((3x)/8)^3`
`=>C(10,4)((3x)/8) lt C(10,3)(2)`
`=>(10**9**8**7)/(4**3**2**1)((3x)/8) lt (10**9**8)/(3**2**1)(2)`
`=>630x/8 lt 240`
`=>x lt 192/63 => x lt 64/21`
So, `2 lt x lt 64/21`, is the value for which `x` will be true.


Discussion

No Comment Found