Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

451.

`(1+tanA)/(1-tanA)=(cos2A)/(1-sin2A)`

Answer» LHS
`=(1+tanA)/(1-tanA)`
`=(1+(sinA/cosA))/(1-(sinA/cosA))`
`=(cosA+sinA)/(cosA-sinA)*(cosA-sinA)/(cosA-sinA)`
`=(cos^2A-sin^2A)/(cosA-sinA)^2`
`=(cos2A)/(cos^2A+sin^2A-2sinAcosA)`
`=(cos2A)/(1-sin2A)`
RHS.
452.

Consider the ellipse `E=x^2/16+y^2/b^2=1` . PQ is a variable chord of the ellipse `E=0` and PQ subtends an angle `90^@` at the origin. And if `1/(OP)^2+1/(OQ)^2=25/144` then `b^2`=

Answer» `1/(OP^2)+1/(OQ^2)=1/b^2+1/16`
`1/b^2+1/16=25/144`
`1/b^2=(25-9)/144=16/144`
`b^2=9`.
453.

Consider the ellipse `x^2/3 + y^2/1 = 1`. Let P,Q,R,S be four points on the ellipse such that the normal drawn from these points are con current at (2,2) then the centre of the conic on which these 4 points lie is (A) P,Q,R,S lie on the given ellipse (B) `(3,-1)` (C) `(3,1)` (D) `(0,0)`

Answer» `N=(a^2x)/x_1-(b^2y)/y_1=a^2-b^2`
`=(2a^2)/x_1-(b^2 2/y_1)=a^2-b^2`
`=3/x_1-1/y_1=1`
`3y_1-x_1-x_1y_1-(1)`
`3y_2-x_2=x_2y_2-(2)`
`xy+x-3y=0`
differentiate with respect to x
y+1=0,y=-1
x+(-3)=0,x=3
(3,-1)
option b is correct.
454.

If `omega` is a cube root of unity then the value of the expression `2(1+w)(1+w^2)+3(2+w)(2+w^2)+.....+(n+1)(n+w)(n+w^2)`

Answer» We can write the given expression as ,
`S = sum_(m=1)^n(m+1)(m+omega)(m+omega^2)`
So , general term in this expression can be given as,
`T_m = (m+1)(m+omega)(m+omega^2)`
`= (m+1)(m^2+(omega+omega^2)m+omega^3)`
As, `1+omega+omega^2 = 0=>omega+omega^2 = -1`
`:. T_m = (m+1)(m^2-m+1)` (As `omega^3 = 1`)
`=> T_m = (m+1)(m(m-1)+1)`
`=m(m^2-1)+m+1`
`:. T_m=m^3+1`
`:. S = sum_(m=1)^n (m^3+1) = sum_(m=1)^n m^3+ sum_(m=1)^n 1`
`=> S= ((n(n+1))/2)^2+n = 1/4(n^2)(n+1)^2+n`
455.

The maximum number of regions in which 10 circle can divide a plane is

Answer» Maximum number of regions in which `n` circles can divide a plane ` = 2^n`
`:.` Maximum number of regions in which `10` circles can divide a plane ` = 2^10 = 1024`
456.

If `|z + 2i|

Answer» `|z+2i|<=1`
`z+2i<=e^i`
`z<=-2i+e^(itheta)`
`|iz+zi-4|=|iz+6-3i-4|`
`=|iz+2-3i|`
`=|2+e^(i(theta+pi/2) +2-3i|`
`=|4-3i+e^(1(theta+pi/2)|`
=6
option 2 is correct
457.

If `z=re^i theta` then `|e^(iz)|` is equal to:

Answer» `z=re^(itheta),iz=ire^(itheta)`
`=l8r{costheta+isintheta}`
`=r(sintheta+icostheta)`
`e^(iz)=e^r*(icostheta-sintheta)`
`=e^(-rsintheta)*e^(ircostheta)`
`|e^(iz) | =|e^(-rsintheta*e*^(ircostheta)`
`=e^(-rsontheta)*|costheta|isintheta|^(rcostheta)`
`=e^(-rsintheta)*(1)^rcostheta`
`=e^(-rsintheta)`.
458.

Let `A={1,2,..., n}`and `B={a , b`}. Then number of subjections from `A`into `B`isnP2 (b) `2^n-2`(c) `2^n-1`(d) nC2A. ` ""^(n)P_(2)`B. `2^(n)-2`C. `2^(n)-1`D. None of these

Answer» Correct Answer - D
Given that, A = { 1, 2, 3, …, n} and B = {a, b}.
We know that, if A and B are two non-empty finite sets containing m and n elements respectively, then the number of surjection from A into B is
`""^(n)C_(m)xxm!, if n ge m`
0, if `n lt m`
Here, m = 2
` :. ` Number of surjection from A into B is
`""^(n)C_(2)xx2! =(n!)/(2!(n-2)!)xx2!`
` " " =(n(n-1)(n-2)!)/(2xx1(n-2))xx2! =n^(2)-n`
459.

If PSQ + PHR be two chords of an ellipse through its foci S and H, then prove that `(PS)/(SQ) + (PH)/(HQ) = 2(1 + e^2)/(1-e^2)`, Where e is the eccentricity of ellipse.

Answer» We can draw an ellipse with the given details.
Please refer to video for the figure.
Equation of ellipse with respect to focus `S` as a pole,
`l/r = 1+ecos theta`
Here, `r = SP`,
`:. l/(SP) = 1+ e cos theta ->(1)`
If vectorial angle of `P` is `theta`, then vectorial angle of `Q` will be `pi+theta`.
If we write equation with respect to `SQ`, then,
`:. l/(SQ) = 1+ ecos(pi+theta)`
`=> l/(SQ) = 1-ecos theta->(2)`
Adding (1) and (2),
`l/(SP)+l/(SQ) = 2`
`=> 1/(SP)+1/(SQ) = 2/l`
`=>1+(SP)/(SQ) = (2(SP))/l->(3)`
Similarly, for chord `PHR`, we can have,
`1+(PH)/(HR) = (2(PH))/l->(4)`
Adding (3) and (4),
`2+((SP)/(SQ)+(PH)/(HR)) = 2/l(SP+PH)->(5)`
As, `S` and `H` are foci of given ellipse.>br>`:. SP+PH =` length of major axis `= 2a`
Also, we know, `2l = 2b^2/a => l =b^2/a`
Putting these values in equation (5),
`2+((SP)/(SQ)+(PH)/(HR)) = 4a^2/b^2`
Als, we know, `b^2 = a^2(1-e^2)`
So, our equation beecomes,
`((SP)/(SQ)+(PH)/(HR)) = 4a^2/(a^2(1-e^2))-2`
`=>((SP)/(SQ)+(PH)/(HR)) = (2+2e^2)/(1-e^2)`
`=>((SP)/(SQ)+(PH)/(HR)) = (2(1+e^2))/(1-e^2)`
460.

The tamer of wild animals has to bring one by one 5 lions & 4 tigers to the circus arena. The number of ways this can be done if no two tigers immediately follow each other

Answer» There are `6` spaces between `5` lions where `4` tiger can be arranged.
So, there are `C(6,4)` ways of tigers arranging between lions so that two tigers do not follow each other immediately.
Now, `4` tigers can be arranged in `4!` ways and `5` lions can be arranged in `5!` ways.
`:.` Required number of ways ` = C(6,4)*4!*5! = 15**24**120 = 43200`
461.

Show that the relation R in the set A of all the books in a library of a college, given by R = {(x, y) : x and y have same number of pages} is an equivalence relation.

Answer» Set `A` is the set of all books in the library of a college.
`R = {x, y): x` and `y` have the same number of pages}.
Now, R is reflexive since `(x, x) in R` as `x` and `x` has the same number of pages.
Let `(x, y) in R => x` and `y` have the same number of pages.
`=> y` and `x` have the same number of pages.
`=> (y, x) in R`.
`:. R` is symmetric.
Now, let `(x, y) in R` and `(y, z) in R`.
`=> x` and `y` and have the same number of pages and `y` and `z` have the same number of pages.
It means `x` and `z` have the same number of pages.
=> `(x, z) in R`.
`:. R` is transitive.
As `R` is reflexive, summetric and transitive, `R` is an equivalence relation.
462.

Let `f`be a function satisfying of `xdot`Then `f(x y)=(f(x))/y`for all positive real numbers `xa n dydot`If `f(30)=20 ,`then find the value of `f(40)dot`

Answer» Given `f(xy)=(f(x))/(y)`
or `f(y)=(f(1))/(y) " "("Putting " x=1) `
or `f(30)=(f(1))/(30)`
or `f(1)=30 xx f(30)=30xx20=600`
` :. f(40)=(f(1))/(40)`
`=(600)/(40)=15`
463.

If `[x]` stands for the greatest integer function, then `[1/2+1/1000]+[1/2+2/1000]+...+[1/2+999/1000]`=

Answer» `[0.5+1/1000]+[0.5+2/1000]+...+[0.5+999/1000]`
There are total of 999 terms
`[0.5+1/1000]+[0.5+2/1000]+...+[0.5+4999/1000]`
There are total of 500 terms.
Option 3 is correct.
464.

A function `f`has domain `[-1,2]`and rang `[0,1]`. Find the domain and range of the function `g`defined by `g(x)=1-f(x+1)dot`

Answer» Correct Answer - Domain: [-2, 1]; Range: [0, 1]
g(x) is defined if `f(x+1)` is defined .
Hence, the domain of g is all x such that `(x+1) in [0, 2],` i.e.,
`-2 le x le 1`.
Also, `f(x+1) in [0,1]`
` :. -f(x+1) in [-1,0]`
` :. 1-f(x+1) in [0,1]`
Therefore, range of g(x) is [0, 1].
465.

The domain and range of the real function f defined by `f(x)=(4-x)/(x-4)` isA. Domain =R , Range ={-1,2}B. Domain =R -{1}, Range RC. Domain =R -{4}, Range ={-1}D. Domain =R -{-4}, Range ={-1,1}

Answer» Correct Answer - C
We have, `f(x) =(4-x)/(x-4)`
f(x) is defined, if `x-4 ne 0i.e.,xne4`
`:.` Domain of f=R-{4}
Let f(x)=y
`:. Y=(4-x)/(x-4)rArrxy-4y=4-x`
`rArr xy+x=4+4yrArrx(y+1)=4(1+y)`
`:. x=(4(1+y))/(y+1)`
x assumes real values, if, `y+1 ne0.i.e.,y=1`
`:.` Range of f=R-{-1}`
466.

Find the domain and the range of the real function f defined by `f(x)=sqrt((x-1))`.A. Domain`=(1,oo),` Range `= (0,oo)`B. Domain`=[1,oo),` Range `= (0,oo)`C. Domain`=(1,oo),` Range `= [0,oo)`D. Domain`=[1,oo),` Range `= [0,oo)`

Answer» Correct Answer - D
We have, `f(x)=sqrt(x-1)`
f(x) is defined if, `x-1ge0`.
`rArr xge1`
`:.` Domain of `f=[1,oo)`
Let f(x)=y
`:. y=sqrt(x-1)`
`rArr y^(2)=x-1`
`:. x=y^(2)+1`
x assumes real values for `y in R.`
but `yge0`
`:.` Range of `f=[0,oo)`
467.

Find the domain and the range of the real function/defined by `f(x)=|x-1|`

Answer» `f(x) = |x-1|`
Domain = `R`
Range = `{ f(x)}`
{`y: y>=0` y is R}
answer
468.

The domain of definition of f(x) =`(log_2(x+3))/(x^2+3x+2)`

Answer» `f(x) = (log_2(x+3))/(x^2+3x+2)`
For `f(x)` to be defined:
(i) `(x+3) gt 0 =>x gt -3`
(ii) `x^2+3x+2 !=0 =>(x+1)(x+2) ! = 0 => x != -1 and x !=-2`
`:. ` Domain of `f(x)` will be `(-3,oo)-{-1,-2}.`
469.

Let `g(x)=int_0^x f(t).dt`,where f is such that `1/2

Answer» `g(x)=int_0^2f(x)dt=int_0^1f(x)dt+int_1^2f(x)dt`
`Ain(0,1)`
`int_0^1 1/2dx<=int_0^1f(t)dt<=int_0^1dt`
`1/2<=int_0^1f(t)dt<=1-(1)`
`Ain(1,2)`
`int_1^2dt<=int_1^2f(t)dt<=int_1^2 1/2dx`
`0<=int_1^2f(t)dt<=1/2-(2)`
adding equation 1 and 2
`1/2<=g(2)<=3/2`
option 2 is correct.
470.

Find the greatest integer x satisfying the inequality `(2x+1)/3-(3x-1)/2>1`

Answer» `(2x+1)/3 - (3x-1)/2 gt 1`
`=>4x+2-9x+3 gt 6`
`=>-5x+5-6 gt 0`
`=>-5x-1 gt 0`
`=>-5x gt 1`
`=>x lt -1/5`
So, `x lt -1/5`, will satisfy the given condition.
471.

49. If `[x^2-2x + a] = 0 `has no solution thenA. `-oo lt a lt 1`B. `2 le a lt oo`C. `1 lt a lt 2`D. ` a in R`

Answer» Correct Answer - B
Case (i)
`x^(2)-2x+a lt 0 AA x in R` which not possible
`x^(2)-2x +a ge 1`
`x^(2)-2x +a-1 ge 0`
Disc `le 0`
`4-4(a-1) le 0`
`2-a le 0`
`a ge 2`
` a in [2, oo)`
472.

If `[x]`and `{x}`represetnt the integral and fractional parts of `x ,`respectively, then the value of `sum_(r=1)^(2000)({x+r})/(2000)`is`x`(b) `[x]`(c) `{x}`(d) `x+2001`A. xB. [x]C. {x}D. x+2001

Answer» Correct Answer - C
`sum_(r=1)^(2000)({x+r})/(2000)=sum_(r=1)^(2000)({x})/(2000)=2000({x})/(2000)={x}.`
473.

if the line 3x-4y-k=0 touches the circle `x^2+y^2-4x-8y-5=0` at (a,b),find (k+a+b)/5 is

Answer» Comparing the given equation of the circle with the general equation of the circle,
`x^2+y^2+2gx+2fy+c = 0`
We get, `g = -2 ` and `f = -4`.
Any tangent that is touching the circle at `(x_1,y_1)` has the equation,
`x x_1+yy_1+g(x+x_1)+f(y+y_1)+c = 0`Now, as the given line is touching the circle at `(a,b)`
`:. ax+by-2(x+a)-4(y+b) -5 = 0`
`=>(a-2)x+(b-4)y-(2a+4b+5) = 0`
Comparing it with given equation, `3x-4y -k = 0`,
`a-2 = 3, b-4 = -4 and k = 2a+4b+5`
`a = 5, b = 0`
`:. k = 10+0+5 = 15`
So, `(k+a+b)/5 = (15+5+0)/5 = 20/5 = 4`
474.

The number of points on the real line where the function f(x)-log- Ix-3) is not defined is `f(x) = log_(|x^2-1|)|x-3|` is not defined is

Answer» Correct Answer - 6
`log_(|x^(2)-1|)|x-3|` is defined when `x-3 ne 0`
and `|x^(2) -1| gt 0 and |x^(2)-1| ne 1.`
`implies x ne 3x^(2) -1 ne 0"i.e.," x ne 1 or -1`
and `|x^(2)-1| ne 1`
`implies x ne -sqrt(2) or sqrt(2) and x ne 0`
` :. ` the points at which the function is not defined are `x=0,1, -1sqrt(2), 3.`
475.

Let `f(x)=3x^2-7x+c ,`where `c`is a variable coefficient and `x >7/6`. Then the value of `[c]`such that `f(x)`touches `f^(-1)(x)`is (where [.] represents greatest integer function)_________

Answer» Correct Answer - 5
`f(x) and f^(-1)(x)` can only intersect on the line `y=x` and therefore, `y=x` must be tangent at the common point of tangency. Hence,
` 3x^(2)-7x+c=x`
` or 3x^(2) -8x+c=0 " (1)" `
This equation must have equal roots. Therefore,
`64-12c =0`
`or c=(64)/(12)=(16)/(3)`
476.

Let `f`be a real-valued invertible function such that `f((-32 x)/(x-2))=5x-2, x!=2.`Then value of `f^(-1)(13)`is________

Answer» Correct Answer - 3
We have `f((2x-3)/(x-2))=5x-2`
`or f^(-1)(5x-2)=(2x-3)/(x-2)`
Let `5x-2=13." Then " x=3`.
Here, `f^(-1)(13)=(2(3)-3)/(3-2)=3`.
477.

If the relation `f(x)={(2x-3",",x le 2),(x^(3)-a",",x ge2):}` is a function, then find the value of a.

Answer» Correct Answer - 7
Given relation is function if `2(2)-3=2^(3)-a" or " a=7`
478.

A real-valued functin `f(x)` satisfies the functional equation `f(x-y)=f(x)f(y)-f(a-x)f(a+y),` where a given constant and `f(0)=1.` Then prove that `f(x)` is symmetrical about point (a, 0).

Answer» We have `f(x-y)=f(x)f(y)-f(a-x)f(a+y)`
Putting `x=a " and " y=x-a,` we get
`f(a-(x-a))=f(a)f(x-a)-f(0)f(x) " (1)" `
Putting `x=0,y=0, ` we get
`f(0)=f(0)(f(0))-f(a) f(a)`
or ` f(0)=(f(0))^(2)-(f(a))^(2)`
or `1=(1)^(2)-(f(a))^(2)`
or `f(a)=0`
` :. f(2a-x)= -f(x) " (from (1))" `
Replacing x by `a-x,` we get
`f(2a-(a-x))= -f(a-x)`
or `f(a+x)= -f(a-x)`
Therefore, `f(x)` is symmetrical about point (a, 0).
479.

The number of integers in the domain of function, satisfying `f(x)+f(x^(-1))=(x^3+1)/x ,i s_____`

Answer» Correct Answer - 2
`f(x)+f((1)/(x))=x^(2)+(1)/(x)`
Replacing x by `(1)/(x),` we get `f((1)/(x))+f(x)=(1)/(x^(2))+x`
`or (1)/(x^(2))+x=x^(2)+(1)/(x)`
`or x-(1)/(x)=x^(2)-(1)/(x^(2))`
`or (x-(1)/(x))=(x-(1)/(x))(x+(1)/(x))`
` or (x-(1)/(x))(x+(1)/(x)-1)=0`
`x=(1)/(x), x+(1)/(x)=1`(rejected)
Hence, `x=1 or -1.`
480.

If a polynomial function `f(x)`satisfies `f(f(f(x))=8x+21 ,`where `pa n dq`are real numbers, then `p+q`is equal to _______

Answer» Correct Answer - 5
`f(x)` must be linear function. Therefore,
`f(x)=px+q`
` :. f(f(x))=pf(x)+q=p(px+q)+q=p^(2)x+pq+q`
` :. f(f(f(x)))=p(p^(2)x+pq+q)+q`
` =p^(3)x+p^(2)q+pq+q`
`=8x+21 ` (Given)
` :. P^(3)=8 or p=2`
and `p^(2)q +pq+q=21 or q=3`
` :. p+q=5`
481.

Which of the following functions is/are identical to `|x-2|` ? (a) `f(x)=sqrt(x^(2)-4x+4) " (b) " g(x)=|x|-|2|` (c ) `h(x)=(|x-2|^(2))/(|x-2|) " (d) "t(x)=|(x^(2)-x-2)/(x+1)|`

Answer» Correct Answer - a
`f(x)=sqrt(x^(2)-4x+4)=sqrt((x-2)^(2))=|x-2|`
`g(x)=|x|-|2|=|x|-2=={(-x-2",",x lt 2),(x-2",",x ge2):}`.
Thus `g(x)` is not same as `|x-2|`
`h(x)=(|h-2|^(2))/(|x-2|)=|x-2|,x ne 2.`
This is not same as `|x-2|` as `h(x)` has domain `R-{2}`
`t(x)=|(x^(2)-x-2)/(x+1)|=|((x-2)(x+1))/(x+1)|=|x-2|, x ne -1`.
Thus `t(x)` is not same as `|x-2|` as `t(x)` has domain `R-{-1}.`
482.

Which of the following function from Z to itself are bijections?`f(x)=x^3`(b) `f(x)=x+2``f(x)=2x+1`(d) `f(x)=x^2+x`

Answer» Correct Answer - b
(b) Clearly, `f(x)` must be `x+2` as for this function, each image has its preimage and each image has one and only one preimage.
483.

For `f(x)=(kcosx)/(pi-2x)`, if `x!=pi/2`, `3`, if `x=pi/2`, then find the value of `k` so that `f` is continous at `x=pi/2`

Answer» `f(x)=(kcosx)/(pi-2x)`
if `x!=pi/2`
`=k/2(cosx)/(pi/2-x)=k/2(sin(pi/2-x)/(pi/2-n))`
`=lim_(x->pi/2)f(x)=lim_(x->pi/2)k/2sin(pi/2-n)/(pi/2-x)`
`=k/2 lim_(x->pi/2)(sin(pi/2-x))/(pi/2-x)`
`=k/2*1=k/2`
if f is continous at x=`pi/2`
`lim_(x->pi/2)f(x)=f(pi/2)`
`k/2-3,k=6`.
484.

`f:R->R` defined by `f(x) = x^2+5`A. `(x+5)^((1)/(3))`B. `(x-5)^((1)/(3))`C. `(5-x)^((1)/(3))`D. `5-x`

Answer» Correct Answer - B
Given that, `f(x)= x^(3) +5`
Let ` " " y=x^(3)+5 implies x^(3)=y-5`
`x=(y-5)^((1)/(3))implies f(x)^(-1)=(x-5)^((1)/(3))`
485.

`A={1,2,3,4,5},S={(x,y):x in A,y, in A}`, then find the ordered which satisfy the conditions given below. (i) `x+y=5` (ii) `x+ylt5` (iii) `x+y=gt8`

Answer» We have `A={1,2,3,4,5},S={(x,y): x in A,y, in A}`,
(i) The set of ordered pairs stistying x+y=5 is
`{(1,4),(2,3),(3,2),(4,1)}`
(ii) The set of ordered paris satisfying `x+ylt "is" (1,1),(1,2),(1,3),(2,1), (2,2),(3,1)`
(iii) The set of ordered pairs satisfying `x+y gt 8 "is" {(4,5),(5,4),(5,5)}`
486.

If `f:A->B, g:B->C` are bijective functions show that `gof:A->C` is also a bijective function.A. `f^(-1)og^(-1)`B. `fog`C. `g^(-1)of^(-1)`D. `gof`

Answer» Correct Answer - A
Given that, `f:A to B` and `g :B to C` be the bijective functions.
`(gof)^(-1)=f^(-1)og^(-1)`
487.

If `R={(x,y): x,y in W, x ^(2)+y^(2)=25}`, then find the domain and range or R.

Answer» We have, `R={(x,y): x,y in W, x ^(2)+y^(2)=25}`
`={(0,5),(3,4),(4,3),(5,0)}`
Domain of R= Set of first element of ordered pairs in R
`={0,3,4,5}`
Range of `" "` R= Set of second element of ordered pairs in R
`={5,4,3,0}`
488.

Let f(x) and g(x) be bijective functions where `f:{a,b,c,d} to {1,2,3,4} " and " g :{3,4,5,6} to {w,x,y,z},` respectively. Then, find the number of elements in the range set of `g(f(x)).`

Answer» The range of `f(x)` for which `g(f(x))` is defined is `{3,4}`.
Hence, the domain of `g{f(x)}` has two elements.
Therefore, the range of `g(f(x))` also has two elements.
489.

In a `Delta ABC` the value of `/_A` is given by 5 CosA - 3 = 0 then the equation whose roots are sinA and tanA is :

Answer» `5cosA-3=0`
`cosA=3/5, sinA=sqrt(1-cos^2A)=4/5`
`tanA=4/3`
Sum of roots=`4/3+4/5=32/15`
Product of roots=`4/3*4/5=16/15`
`x^2-(32/15)x+16/15=0`
`15x^2-32x+16=0`
option d is correct.
490.

If `R_(1)={(x,y)|y=2x+7,` where `x in R and -5lexle5}` is a relation. Then, find the domain and range of `R_(1)`

Answer» We have, `R_(1)={(x,y)|y=2x+7,` where `x in R and -5lexle5}`
Domain of `R_(1)={-5le x le, x in R}`
`=[-5,5]`
`:. y=2x +7`
When `x=-5, then y=2(-5)+7=-3`
When x =5, then `y=2(5) + 7 =17`
`:.` Range of `R_(1)={-3 leyle 17, y in R}`
=[-3,17]
491.

If `R_(3)={(x,|x|),|x` is a real number } is a releation, then find domain and range of `R_(3)`

Answer» We have, `R_(3)={(x,|x|)x` is real number}
Clearly, domain of `R_(3)=R`
Since, image of any real number `R_(3)` is positive real number of zero,
`:.` Range of `R_(3)=R^(+)uu{0}or (0,oo)`
492.

Let `f:{2,3,4,5} to {3,4,5,9}and g:{3,4,5,9} to {7,11,15}` be functions defined as `f(2)=3,f(3)=4, f(4)=f(5)=5, g(3)=g(4)=7, " and " g(5)=g(9)=11. " Find " gof.`

Answer» We have `gof(2)=g(f(2))=g(3)=7,`
`gof(3)=g(f(3))=g(4)=7,`
`gof(4)=g(f(4))=g(5)=11,`
and `gof(5)=g(5)=11.`
493.

Find the fundamental period of `f(x)=cosxcos2xcos3xdot`

Answer» Correct Answer - `pi`
`f(x)=cosx cos2x cos 3x`
`cosx,cos2x,` and `cos 3x` are periodic with period `2pi,pi,` and `(2pi)/(3)`
L.C.M. of `(pi,2pi, (2pi)/(3))=2pi`
But `f(x+pi)=cos(x+pi) cos(2x+2pi)cos(3x+3pi)`
`=(-cosx)(cos 2x)(-cos 3x)`
`=cosx cos 2x cos 3x`
`=f(x)`
Hence, period is `pi`.
494.

The difference between the maximum and minimum value of the function `f(x)=3sin^4x-cos^6x` is :

Answer» `f(x) = 3sin^4x-cos^6x`
`= 3sin^4x-(1-sin^2x)^3`
`= 3sin^4x-(1-sin^6x-3sin^2x(1-sin^2x))`
`= 3sin^4x-(1-sin^6x-3sin^2x+3sin^4x)`
`=sin^ 6x + 3sin^2x -1`
`:. f(x) = sin^2x(sin^4x+3) - 1`
Now, `f(x)` will be maximum, when `sinx = 1` and will be minimum when `sin x = 0`.
`:. f(x)_max = 1(1+3)-1 = 3`
`f(x)_min = 0(0+3)-1 = -1`
`:. f(x)_max-f_min = 3-(-1) = 4`, which is the required difference.
495.

Find the values of x for which the following function is defined: `f(x)=sqrt((1)/(|x-2|-(x-2)))`

Answer» Correct Answer - `(-oo,2)`
`|x-2|={(x-2",",x ge2),(2-x",",x lt 2):}`
`implies|x-2|-(x-2)={(0",",x ge2),(4-2x",",x lt 2):}`
Therefore, given expression is defined for `(-oo,2)`
496.

If `R_2={(x,y)| x and y` are integers and `x^2 +y^2=64`} is a relation. Then find `R_2`.

Answer» We have `R_(2)={(x,y)x and y` are integers and `x^(2)+y^(2)=64}`
Since, 64 is the sum of squares of `0and +-8`
When x=0 then `y^(2)=64rArry=+-8`
x =8, then `y^(2)=64-8^(2)rArr64-64=0`
x=-8, then `y^(2)=64-(-8)^(2)=64-64=0`
`:. R_(2)={(0,8),(0,-8),(8,0),(-8,0)}`
497.

If `f(x)=lambda|sinx|+lambda^2|cosx|+g(lambda)` has a period = `pi/2` then find the value of `lambda`

Answer» Correct Answer - 1
Since the period of `|sin x|+|cosx|` is `pi//2`,
it is possible when `lambda=1.`
498.

Find the period of the following function (i) `f(x) =|sinx|+|cosx|` (ii) `f(x)=cos(cosx)+cos(sinx)` (iii) `f(x)= (|sinx+cosx|)/(|sinx|+|cosx|)`

Answer» (i) `f(x) =|sinx|+|cosx|`
Period of both `|sinx|` and `|cosx|` is `pi`.
So, we can consider period of f(x) to be `pi`.
But `f((pi)/(2)+x)=|sin((pi)/(2)+x)|+|cos((pi)/(2)+x)|`
`=|cosx|+|-sinx|`
`=|cosx|+|sinx|`
`=f(x)`
So, period of f(x) is `Pi//2`.
(ii) `f(x)=cos(cosx)+cos(sinx)`
Period of `cos(cosx) " is " pi.`
Period of `cos(sinx) " is " pi.`
So, we can consider period of f(x) to be `pi`.
But `f((pi)/(2)+x)=cos(cos((pi)/(2)+x))+cos(sin((pi)/(2)+x))`
`=cos(-sinx)+cos(cosx)`
`=cos(sinx)+cos(cosx)`
So, period of f(x) is `pi//2`
(iii) `f(x)= (|sinx+cosx|)/(|sinx|+|cosx|)`
`|sinx +cosx|=sqrt(2)|sin(x+(pi)/(4))|`, which is has period `pi`.
Period of `|sinx|+|cosx| " is " pi//2`.
Therefore, period of f(x) is L.C.M. of `(pi,pi//2)=pi`
499.

Find the period `f(x)=sinx+{x},`where {x} is the fractional part of `xdot`

Answer» Here, `sinx` is periodic with period `2pi` and [x} is periodic with 1. The LCM of `2pi` (irrational) and 1 (rational ) does not exist.
Thus, f(x) is not periodic.
500.

The number of value(s) of x satisfying the equation `(2011)^x+ (2012)^x + (2013)^x -(2014)^x=0` is/are :

Answer» `(2011)^x+(2012)^x+(2013)^x - (2014)^x = 0`
`=> (2011)^x+(2012)^x+(2013)^x = (2014)^x`
If we draw the graph of `2011^x,2012^x and 2013^x`, we will find that their sum will match exactly one time with the `2014^x`.
Please refer to video to see the graph.
Thus, there will be exactly one solution fo the given equation.