Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

501.

If the letter of the word BRING are permuted in all possible ways and the word thus formed are arranged in the dictionary order, then find 59th word.

Answer» `59^(th)` word=IGRBN
502.

If `y=3[x]+1=4[x-1]-10,` then find the value of `[x+2y]`.

Answer» Correct Answer - 107
`y=3[x]+1=4[x-1]-10=4[x]-14`
or `[x]=15 " and " y=3(15)+1=46`
or `[x+2y]=2y+[x]=2(46)+15=107`
503.

Period of `f(x)=sin((cosx)+x)` is

Answer» `f(x)=sin(x+cosx)`
Let period be T.
` :. f(x+T)=f(x)` for all real x.
Putting `x=0`, we have
`f(T)=f(0)`
or ` sin(T+cos T)=sin 1`
By intelligent guessing, `T=2pi`, which is the least positive value.
Also, `f(x+2pi)=sin(x+2pi +cos(x+2pi))`
`=sin(2pi+(x+cosx))`
`=sin(x+cosx)=f(x)`
504.

Find the period of (i) `f(x)=sin pi x +{x//3}`, where {.} represents the fractional part. (ii) `f(x)=|sin 7x|-"cos"^(4)(3x)/(4)+"tan"(2x)/(3)`

Answer» (i) `f(x)=sin pi x +{x//3}`, where {.} represents the fractional part
Period of ` sin pi x " is " (2pi)/(pi)=2`
Period of `{x//3} " is " (1)/(1//3)=3`
Therefore, period of f(x) is L.C.M. of `(2,3)=6`
(ii) `f(x)=|sin 7x|-"cos"^(4)(3x)/(4)+"tan"(2x)/(3)`
Period of `|sin 7x| " is " (pi)/(7)`
Period of `"cos"^(4)(3x)/(4) " is " (pi)/(3//4)=(4pi)/(3)`
Period of `tan(2x)/(3) " is " (pi)/(2//3)=(3pi)/(2)`
Therefore, period of f(x) is L.C.M. of
`((pi)/(7),(4pi)/(3),(3pi)/(2))=pi xx (L.C.M. of (1,4,3))/(H.C.F. of (7,3,2)`
`=12 pi`
505.

Find the range of `f(x)=sqrt(sin(cos x))+sqrt(cos(sin x))`.

Answer» `f(x)=sqrt(cos(sinx))+sqrt(sin(cosx))`
Period of `f(x)` is `2 pi`.
Also, `sin(cosx) ge 0 impliescosx in [0,1]`
`implies x in [-(pi)/(2),(pi)/(2)]`
` :. x` lies in `1^(st)` and `4^(th)` quadrants.
Also `f(-x)=f(x)`
` :. f(x)` is even.
` :. ` we need to find the range in `[0,(pi)/(2)]` only
In `[0,(pi)/(2)], sinx` increases, but `cosx` decreases
` :. " both " cos(sinx) and sin(cosx)` decrease.
Hence `f(x)` decreases,
` :. ` Range is `[f(pi//2),f(0)] -=[sqrt(cos 1),1+sqrt(sin1)]`
506.

Solve the system of equations in `x,y and z` satisfying the following equations `x+[y]+{z}=3.1, y+[z]+{x}=4.3 and z+[x]+{y}=5.4`

Answer» Adding all the three equations, we get
`2(x+y+z)=12.8 " or " x+y+z=6.4 " (1)" `
Adding the first two equations, we get
`x+y+z+[y]+{x}=7.4 " (2)" `
Adding the second and third equations, we get
`x+y+z+[z]+{y}=9.7 " (3) " `
Adding the first and third equations, we get
`x+y+z+[x]+{z}=8.5 " (4)" `
From (1) and (2), `[y]+{x}=1.`
From (1) and (3), `[z]+{y}=3.3.`
From (1) and (4), `[x]+{z}=2.1.` So,
`[x]=2,[y]=1,[z]=3`,
`{x}=0,{y}=0.3, " and " {z}=0.1`
` :. x=2,y=1.3, z=3.1`
507.

The sum of all real values of x satisfying the equation `(x^2-5x+5)^(x^2+4x-60)=1`is:(1) 3 (2) `-4`(3) 6(4) 5

Answer» if `a^x = 1`
then 3 conditions are
`a= -1,0,1`
&`x=0 or in` even no
`a= 1 ; x in R`
`a=-1 ; x in `even no
`x=0, a=1`
now, `x^2 - 5x + 5 =1`
`x^2 - 5x + 4=0 `
`x^2 - 4x - x + 4 = 0`
`(x- 4)(x-1) = 0`
`x=4,1`
now,`x^2 - 5x + 5= -1`
`x^2 - 5x + 6= 0`
`x^2 - 2x - 3x + 6= 0`
`(x-2)(x-3) =0 `
`x= 2,3`
`x^2 + 4x - 60`
for ` x=2`
`4 + 8 - 60 = 48 in ` even number
for `x=3`
`9 + 12 - 60 = 30 cancel( in) ` even no, so not possible
`x^2 + 4x - 60 = 0`
`x^2 + 10x - 6x - 60 = 0`
`(x+10)(x-6) = 0`
`x= -10,6`
`x= 4,1,2,-10,6`
sum=`4+1+2-10+6 = 3`
option 4 is correctAnswer
508.

Solve |4-|x-1||=3

Answer» Correct Answer - `x= -6,0,2,8`
`|4-|x-1||=3`
`implies |x-1|-4= +-3`
`implies |x-1|=7,|x-1|=1`
`implies x= -6,0,2,8`
509.

Solve `|3x-2| le (1)/(2)`.

Answer» `|3x-2| le (1)/(2)`
or `-(1)/(2) le 3x -2 le (1)/(2)`
or ` (3)/(2) le 3x le (5)/(2)`
or `(1)/(2) le x le (5)/(6)`
or `x in [(1)/(2),(5)/(6)]`
510.

The locus of the intersection point of `x cos alpha +y sin alpha=a` and `x sin alpha- y cos alpha=b` is

Answer» let the locus be `P(H,K)`
`hcos alpha + k sin alpha = a`
`h sin alpha - kcos alpha = b`
by solving bith, we get
`h^2(sin^2 alpha + cos^2 alpha) + k^2(sin^2 alpha + cos^2 alpha) = a^2 + b^2`
`sin^2 alpha + cos^2 alpha = 1`
`h^2 + k^2 = a^2 + b^2 `
locus of point P(h,k)`x^2 + y^2= a^2 + b^2 `
Answer
511.

If `f(x) = [x] , 0

Answer» `f(-x)={([-x]",",0 le {-x}lt0.5),([-x]+1",",0.5 lt {-x} lt1):}`
`={([-x]",",{-x}=0),([-x]",",0 lt {-x} lt 0.5),([-x]+1",",0.5 lt {-x} lt1):}`
`={(-[x]",",{x}=0),(-1-[x]",",0 lt 1-{x} lt 0.5),(-1-[x]+1",",0.5 lt 1-{x} lt1):}`
`={(-[x]",",{x}=0),(-1-[x]",",0.5 lt {x} lt 1),(-[x]",",0 lt {x} lt0.5):}`
`={(-[x]",",0 le{x}lt0.5),(-1-[x]",",0.5 lt {x} lt 1):}`
`= -f(x)`
512.

In each of the following cases find the period of the function if it is periodic. (i) `f(x)="sin"(pi x)/(sqrt(2))+"cos"(pi x)/(sqrt(3)) " (ii) " f(x)="sin"(pi x)/(sqrt(3))+"cos"(pi x)/(2sqrt(3))`

Answer» (i) Period of `"sin"(pi x)/(sqrt(2))=(2pi)/(pi//sqrt(2))=2 sqrt(2)`
Period of `"cos"(pi x)/(sqrt(3))=(2pi)/(pi//sqrt(3))=2 sqrt(3)`
Now, L.C.M. of two different kinds of irrational number does not exist.
Therefore, f(x) is not periodic.
(ii) Period of `"sin"(pi x)/(sqrt(3))=(2pi)/(pi//sqrt(3))=2 sqrt(3)`
Period of `"cos"(pi x)/(2sqrt(3))=(2pi)/(pi//2sqrt(3))=4 sqrt(3)`
Now, L.C.M. of `(2sqrt(3),4 sqrt(3))`
`=sqrt(3) xx L.C.M. " of " (2,4)=4sqrt(3)`
513.

Solve `[x]^(2)-5[x]+6=0.`

Answer» Correct Answer - `[2,4)`
`[x]^(2)-5[x]+6=0`
or `[x]=2,3`
or `x in [2,4)`
514.

Let `f : X->Y`be a function. Define a relation R in X given by `R = {(a , b): f(a) = f(b)}`. Examine if R is an equivalence relation.

Answer» `R = {(a,b): f(a) = f(b)}`
As `f(a) = f(a)`
`:. (a,a) in R`
`:. R` is reflexive.
If `f(a) = f(b)`
Then, `f(b) = f(a)`
Thus, `(b,a) in R`
So, if `(a,b) in R`, then `(b,a) in R`
`:. R` is ymmetric.
If `(a,b) in R`,
Then, `f(a) = f(b)`->(1)
If `(b,c) in R`,
Then, `f(b) = f(c)`->(2)
From (1) and (2),
`f(a) = f(c)`
`:. (a,c) in R`
`:. R` is transitive.
As `R` is reflexive, summetric and transitive, `R` is an equivalence relation.
515.

The period of function `2^({x}) +sin pi x+3^({x//2})+cos pi x` (where {x} denotes the fractional part of x) isA. 2B. 1C. 3D. None of these

Answer» Correct Answer - A
The period of `sin pi and cos pi x and cos pi x ` is 2 and 1, respectively.
The period of `2^({x})` is 1.
The period of `3({x//2})` is 2.
Hence, the period of `f(x)` is LCM of 1 and 2, i.e., 2.
516.

Find the possible values of`sqrt(|x|-2)`(ii) `sqrt(3-|x-1|)`(iii) `sqrt(4-sqrt(x^2))`

Answer» (i) `sqrt(|x|-2) `
We know that square roots are defined for non-negative values only.
It implies that we must have ` |x|-2 ge 0`. Thus,
`sqrt(|x|-2) ge 0`
(ii) `sqrt(3-|x-1|)` is defined when `3-|x-1| ge 0`
But the maximum value of `3-|x-1|` is 3, when `|x-1|` is 0.
Hence, for `sqrt(3-|x-1|)` to get defined, ` 0 le 3-|x-1|le 3`.
Thus,
`sqrt(3-|x-1|) in [0, sqrt(3)]`
Alternatively, ` |x-1| ge 0`
`implies -|x-1| le 0`
`implies 3-|x-1| le 3`
But for `sqrt(3-|x-1|)` to get defined, we must have
`0 le 3 -|x-1| le3`
`implies 0 le sqrt(3-|x-1|) le sqrt(3)`
(iii) `sqrt(4-sqrt(x^(2)))=sqrt(4-|x|)`
`|x| ge 0`
`implies -|x| le 0`
`implies4-|x| le 4`
But for `sqrt(4-|x|)` to get defined `0 le 4 -|x| le 4`
` :. 0 le sqrt(4-|x|) le 2`
517.

Verify that`x sgnx=|x|``|x|sgnx=x``x(sgnx)(sgnx)=x`

Answer» (i) `x " sgn "x={(x*1",",x gt 0),(0",", x=0),(x*(-1)",",x lt 0):} = {(x",",x gt0),(0",",x=0),(-x",", x lt 0):}=|x|`
(ii) `|x| " sgn "x={(x*1",",x gt 0),(0",", x=0),((-x)*(-1)",",x lt 0):} = {(x",",x gt0),(0",",x=0),(x",", x lt 0):}=x`
(iii) `x ("sgn "x) ("sgn "x)=|x| " sgn " (x)=x`
518.

Prove that function `f(x)=cos sqrt(x)` is non-periodic.

Answer» We have `f(x)=cos sqrt(x)`
Let f(x) be periodic with period T, where `T gt 0.`
` :. f(x+T)=f(x)`
`implies cos sqrt(x+T)=cos sqrt(x) " for " x ge 0.`
In particular choosing ` x=0`, we have
`cos sqrt(T)=cos sqrt(0)=1 " …(1)" `
For `x=T`, we have
`cos sqrt(T+T)=cos sqrt(T)=1`
or `cos sqrt(2T)=1 " ...(2)" `
From (1) , `sqrt(T) =2m pi, m in Z`
From (2), `sqrt(2T)=2n pi, n in Z`
` :. (sqrt(2T))/(sqrt(T))=(2n pi)/(2m pi)`
or ` sqrt(2)=(n)/(m),` which is not true.
So, `cos sqrt(x)` is not periodic.
519.

Solve `|x-3|+|x-2|=1.`

Answer» `|x-3|=|x-2|=1`
`implies |x-3|+|x-2|=(3-x)+(x-2)`
`implies x-3 le 0 " and " x-2 ge 0`
`implies x le 3 " and " x ge 2`
`implies 2 le x le 3`
520.

Period of the function `f(x)=sin((x)/(2))cos [(x)/(2)]-cos((x)/(2))sin[(x)/(2)]`, where [.] denotes the greatest integer function, is _________.

Answer» Correct Answer - 2
`f(x)=sin((x)/(2))cos [(x)/(2)]-cos((x)/(2))sin[(x)/(2)]`
` =sin((x)/(2)-[(x)/(2)])`
`=sin({(x)/(2)})`
` :. " period of " f(x), T=2`
521.

Verify that the period of function `f(x) =sin^(10)x " is " pi.`

Answer» We have `f(x)=sin^(10)x`
Now `f(x+pi)=sin^(10)(x+pi)`
`=(sin(x+pi))^(10)`
`=(-sinx)^(10)`
`=sin^(10)x`
`=f(x)`
Thus, we have `f(x+pi)=f(x)` for all ` x in R.`
So,period of f(x) is `pi`.
522.

Solve the differential equation `2x^2(dy)/(dx)-2xy+y^2=0`, `y^2(e)=e`

Answer» `2x^2dy/dx-2xy+y^2=0`
`2x^2*1/y^2dy/dx-2x/y+1=0`
`2x^2(-dz/dx)-2xz+1=0`
`2x^2dz/dx+2xz=1`
`dz/dx+1/x^2=1/(2x^2)`
`d/dx{ze^(int1/xdx)}=1/(2x^2)*e^(1/xdx`
`d/dx(2x)=1/(2x^2)*x`
`2x=int 1/(2x)dx`
`=1/2log|x|+c`
`x/y=1/2log|x|+c`
`e/(y(e))=1/2log|e|+c`
`e/(y(e))=1/2+c`
`c=e/(y(e))-1/2`
`c=pmsqrte-1/2`
`x/y=1/2log|x|+c`
`c=pmsqrte-1/2`.
523.

Let `f(x)=sin(x/(n!))+cos((2x)/((n+1)!))`. Find the period of `f(x)`.

Answer» Period of `sin(x/n_1)=T_1`
`T_1/(n!) =2pi`
`T_1=n!(2pi)`
Period of `cos((2x)/(n+1)!)=T_2`
`(2T_2)/((n+1)!)=2pi`
`T_2=(n+1)!pi`
Period of`sin(x/n_1)+cos((2x)/((n+1)!))` is
T such that`n_1T_1=n_2T_2=T`
Such at `n_1n_2` are to each
`(n!)2pi*n_1=n_2(n+1)!pi`
`2n_1=(n+1)n_2`
`n_1/n_2=(n+1)/2`
when n is own,`n_1/n_2=(n+1)/2`
`n_1=n+1,n_2=2`
`T=2(n+1)!pi`
When n is odd
`n_1/n_2=(n+1)/2`
`n_1=(n+1)/2,n_2=1`
`T=(n+1)!pi=(n+1)!pi`
`T=2(n+1)!pi` when n is even.
`T=(n+1)!pi`, when n is odd.
524.

The period of the function `|sin^3(x/2)|+|cos^5(x/5)|`isA. `2pi`B. `10pi`C. `8pi`D. `5pi`

Answer» Correct Answer - B
`f(x)=|"sin"^(3)(x)/(2)|+|"cos"^(5)(x)/(5)|`
The period of `sin^(3)x` is `2pi`.
So, the period of ` "sin"^(3)(x)/(2) " is " (2pi)/(1//2)=4pi.`
So, the period of `|"sin"^(3)(x)/(2)|" is " 2pi.`
The period of `cos^(5) x " is " 2pi.`
So, the period of ` "cos"^(5)(x)/(5) " is " (2pi)/(((1)/(5)))=10pi.`
So, the period of `|"cos"^(5)(x)/(2)| " is " 5pi`
So, the period of `|"cos"^(5)(x)/(2)| " is " 5pi`
Now, period of `f(x)=LCM " of " {2pi,5pi}=10pi`
525.

Prove that period of function `f(x)=sinx, x in R " is " 2pi.`

Answer» Let period of `f(x)=sin x " be " T`
` :. F(x+T)=f(x)` for all real x.
or ` sin(x+T)=sin x` for all real x.
` :. Sin(0+T)=sin 0 " " ("putting" x=0)`
` :. T=n pi, n in Z.`
The least value of T is `pi`.
But for `T=pi, sin(x+pi)= -sinx ne f(x)`
So, let `T=2pi` for which `sin(x+2pi)=sinx.`
Thus, period of `sinx` is `2pi`.
526.

Solve the differential equation: `dy/dx + y cotx = 4x cosec x`, given that y=0 at x = `pi/2`

Answer» Comparing the given equation with first order differential equation,
`dy/dx+Py = Q(x)`, we get,`P = cotx and Q(x) = 4xcosecx`
So, Integrating factor `(I.F) = e^(intcotxdx)`
`I.F.= e^(ln|sinx|) = sinx`
we know, solution of differential equation,
`y(I.F.) = intQ(I.F.)dx`
`:.`Our solution will be,
`ysinx = int 4xcosecxsinxdx`
As `sinx cosecx = 1`,
`=>ysinx = int 4xdx`
`=>ysinx = 2x^2+c`
At `y = 0 and x = pi/2`, equation becomes
`0 = 2(pi/2)^2 +c => c = -pi^2/2`
So, solution will be,
`ysinx = 2x^2-(pi)^2/2`
527.

Solve: `|-2x^2+1+e^x+sinx|=2x^2-1|+e^x+|sinx|,x in [0,2pi]dot`

Answer» `|-2x^(2)+1+e^(x)+sinx|=|2x^(2)-1|+e^(x)+|sinx|, x in [0,2pi]`
in the R.H.S., each term is positive and `e^(x) gt 0.` So,
`1-2x^(2) ge 0` and ` sin x ge 0`
or `x in [-(1)/(sqrt(2)),(1)/(sqrt(2))] and x in [0,pi]`
` :. x in [0,(1)/(sqrt(2))]`
528.

Let `f(x)={(sinx+cosx",",0 lt x lt (pi)/(2)),(a",",x=pi//2),(tan^(2)x+"cosec"x",",pi//2 lt x lt pi):}` Then its odd extension isA. `{(-tan^(2)x-"cosec"x",",-pi lt x lt -(pi)/(2)),(-a",",x=-(pi)/(2)),(-sinx+cosx",",-(pi)/(2) lt x lt 0 ):}`B. `{(-tan^(2)x+"cosec"x",",-pi lt x lt -(pi)/(2)),(-a",",x=-(pi)/(2)),(sinx-cosx",",-(pi)/(2) lt x lt 0 ):}`C. `{(-tan^(2)x+"cosec"x",",-pi lt x lt -(pi)/(2)),(a",",x=-(pi)/(2)),(sinx-cosx",",-(pi)/(2) lt x lt 0 ):}`D. `{(tan^(2)x+"cosec"x",",-pi lt x lt -(pi)/(2)),(-a",",x=-(pi)/(2)),(sinx+cosx",",-(pi)/(2) lt x lt 0 ):}`

Answer» Correct Answer - B
For odd function,
`f(x)= -f(-x)`
` = -{(sin(-x)+cos(-x)",",0 lt -x lt pi//2),(a",",-x=pi//2),(tan^(2)(-x)+"cosec"(-x)",",pi//2 lt -x lt pi):}`
` ={(sinx-cosx",", -pi//2 lt x lt 0),(-a",",x= -pi//2),(-tan^(2)x+"cosec"x",",-pi lt x lt -pi//2 ):}`
529.

Solve `|sinx +cos x |=|sinx|+|cosx|, x in [0,2pi]`.

Answer» The given relation holds only when sin x and cos x have the same sign or at least one of them is zero.
Hence, `x in [ 0, pi//2] cup [pi,3pi//2] cup {2pi}.`
530.

Evaluate `int (xtan^(-1)x)/(1+x^2)^(3/2) dx`

Answer» `Let x=tantheta`
`dx=sec^2d theta`
`1+x^2=1+tan^2theta=sec^2theta`
`int(xtan^(-1)xdx)/(1+x^2)^(3/2)`
`int(tantheta*theta*sec^2theta*dthet a)/(sec^2theta)^(3/2)`
`inttheta*tantheta*sec^2theta/sec^3theta dthet a`
`inttheta*sinthetad theta`
`-thetacostheta+sintheta+c`
`(-tna^(-1)x)/sqrt(1+x^2)+x/sqrt(1+x^2)+c`.
531.

`int 1/((1+x^2) tan^(-1)x) dx`

Answer» `tan^(-1)x=t`
`1/(1+x^2)dx=dt`
`=int1/t dt`
`=lnt+C`
`=ln(tan^(-1)x)+C`.
532.

Using integration, find the value of `m`. If the area bounded by parabola `y^2=16ax` and the line `y=mx` is `a^2/12` square units.

Answer» `y^2=16an`
`y=mx`
`(mx)^2=16an`
`x=0,x=(16a)/m^2`
`int_0^(16/m^2)(sqrt(16ax)-mx)dx`
`sqrt(16a)int_0^(16/m^2)x^(1/2)dx-m int_0^((16a)/m^2)*xdx`
`sqrt(16a)*2/3*(8*9sqrta)/m^2-m/2*(256a^2)/m^4`
`64/3*a^2/m^3-(128a^2)/m^3`
`a^2/m^3{(8*64-3*128)/3}`
`a^2/m^3*128/3=a^2/12`
`m^3=(12*128)/3=4*128`
`m=8`.
533.

If the functions `f(x) and g(x)` are defined on `R -> R` such that `f(x)={0, x in` retional and `x, x in` irrational ; `g(x)={0, x in` irratinal and `x,x in` rational then `(f-g)(x)` is

Answer» We have, `(f-g):R to R,`
`(f-g)(x)={(-x" if "x in "rational"),(x" if "x in "irrational"):}`
Clearly `(f-g)(x)` is one-one and onto.
534.

If ` f:[0,oo) to [0,1), " and " f(x)=(x)/(1+x)` then check the nature of the function.

Answer» Given that `f:[0,oo) to [0, oo),f(x)=(x)/(x+1)`
Let `f(x_(1))=f(x_(2))`
`implies (x_(1))/(x_(1)+1)=(x_(2))/(x_(2)+1)`
`implies x_(1)x_(2)+x_(1)=x_(1)x_(2)+x_(2)`
`implies x_(1)=x_(2)`.
Thus f(x) is one-one.
Now let `y=(x)/(1+x)`
`implies y+yx=x`
`implies x=(y)/(1-y)`
As ` x ge 0, (y)/(1-y) ge 0`
`implies (y)/(1-y) le 0`
`implies 0 le y lt 1` or range of f(x) is `[0,1).`
Thus f(x) is onto.
535.

If m n, k are rational and` m =k+k/n` then the roots of `x^2+mx+n=0` are

Answer» `x+mx+n=0`
`x^2+(k+n/k)x+n=0`
`x=(-(k+n/k)pmsqrt((k+n/k)^2-4n))/2`
`x=(-(k+n/k)pmsqrt(k^2+n^2/k^2+2n-4n))/2`
`x=(-(k+n/k)pm(k-n/k))/2`
`x=-k,-n/k`.
536.

If ` f:[0,oo) to [0,1), " and " f(x)=(x)/(1+x)` then check the nature of the function.

Answer» Given that `f:[0,oo) to [0, oo),f(x)=(x)/(x+1)`
Let `f(x_(1))=f(x_(2))`
`implies (x_(1))/(x_(1)+1)=(x_(2))/(x_(2)+1)`
`implies x_(1)x_(2)+x_(1)=x_(1)x_(2)+x_(2)`
`implies x_(1)=x_(2)`.
Thus f(x) is one-one.
Now let `y=(x)/(1+x)`
`implies y+yx=x`
`implies x=(y)/(1-y)`
As ` x ge 0, (y)/(1-y) ge 0`
`implies (y)/(1-y) le 0`
`implies 0 le y lt 1` or range of f(x) is `[0,1).`
Thus f(x) is onto.
537.

If the function `f: RvecA`given by `f(x)=(x^2)/(x^2+1)`is surjection, then find `Adot`

Answer» `f:R to A,f(x)=(x^(2))/(x^(2)+1)`
Here domain is all real numbers.
Since `f(x)` is onto, range must be same as codomain (A).
To find the range of the function,
`f(x)=1-(1)/(x^(2)+1)`
Now` x^(2)+1 ge 1 AA in R.`
`implies 0 lt (1)/(x^(2)+1) le 1`
`implies -1 le -(1)/(x^(2)+1) lt 0`
`implies 0 le 1 -(1)/(x^(2)+1) lt 1`
Thus, range is `[0,1).`
Hence codomain `A=[0,1).`
538.

Let `f: NvecZ`be a function defined as `f(x)=x-1000.`Show that `f`is an into function.

Answer» Let `f(x)=y=x-1000`
`implies x=y+1000=g(y)` (say)
Here g(y) is defined for each `y in Z,` but `g(y) notin N " for " y le -1000.`
Hence `f` is into.
539.

Let `f:R to R` where `f(x) =sin x.` Show that `f ` is into. Also find the codomain if `f` is onto.

Answer» `f:R to R, f(x) =sinx`
Range of the function is `[-1,1],` which is subset of codomain R.
So, `f(x)` is into.
To make `f(x)` onto, we modify the codomain to `[-1,1].`
540.

If `f(x)=1/x ,g(x)=1/(x^2),`and `h(x)=x^2,t h e n``f(x)=x^2,x!=0,(h(g(x))=1/(x^2)``h(g(x))=1/(x^2),x!=0,fog(x)=x^2``fog(x)=x^2,x!=0,h(g(x))=(g(x))^2,x!=0`none of theseA. `fog(x)=x^(2),x ne 0, h(g(x))=(1)/(x^(2))`B. `h(g(x))=(1)/(x^(2)),x ne 0, fog(x)=x^(2)`C. `fog(x)=x^(2), x ne 0, h(g(x))=(g(x))^(2), x ne 0`D. None of these

Answer» Correct Answer - C
`f(x)=(1)/(x), g(x)=(1)/(x^(2)), and h(x)=x^(2)`
`f(g(x))=x^(2), x ne 0`
`h(g(x))=(1)/(x^(4))=(g(x))^(2), x ne 0`
541.

If `f(x)={(x^(2)",","for "x ge0),(x",","for "x lt 0):}`, then fof(x) is given byA. `x^(2) " for " x ge 0, x " for " x lt 0`B. `x^(4) " for " x ge 0, x^(2) " for " x lt 0`C. `x^(4) " for " x ge 0, -x^(2) " for " x lt 0`D. `x^(4) " for " x ge 0, x " for " x lt 0`

Answer» Correct Answer - D
`f(f(x))={((f(x))^(2)",", "for " f(x) ge 0),(f(x)",","for " f(x) lt 0):}`
`={((x^(2))^(2)","x^(2) ge 0"," x ge 0),(x^(2)","x ge 0"," x lt 0),(x^(2)"," x^(2) lt 0"," x ge 0),(x"," x lt 0"," x lt 0):}`
`={(x^(4)","x ge 0),(x","x lt 0):}`
542.

Find fog and gof , if (i) () `f(x)= |x|` and `g(x)=|5x-2|`(ii) `f(x)=8x^3` and `g(x)=x^(1//3)`

Answer» (i)Here, `f(x) = |x|,g(x) = |5x-2|`
`:. fog = f(g(x)) = f(|5x-2|) = ||5x-2|| =|5x-2|`
`gof = g(f(x)) = g(|x|) = |5|x|-2|`

(ii)Here, `f(x) = 8x^3,g(x) = x^(1/3)`
`:. fog = f(g(x)) = f(x^(1/3)) = (8(x^(1/3))^3) =8x`
`gof = g(f(x)) = g(8x^3) = (8x^3)^(1/3) = 2x`

543.

State with reason whether following functions have inverse (i) `f:{1,2,3,4} ->{10} " with " f={(1, 10),(2, 10),(3, 10),(4, 10)}`(ii) `g:{5, 6, 7, 8}->{1,2,3,4}" with "g={(5, 4),(6, 3),(7, 4),(8, 2)}`(iii) `h : {2, 3, 4, 5} → {7, 9, 11, 13}" with "h = {(2, 7), (3, 9), (4, 11), (5, 13)}`

Answer» (i) `f: {1, 2, 3, 4} → {10}` defined as:
`f = {(1, 10), (2, 10), (3, 10), (4, 10)}`
From the given definition of f, we can see that f is a many one function as:` f(1) = f(2) = f(3) = f(4) = 10`
`:.` f is not one-one.
Hence, function f does not have an inverse.

(ii) `g: {5, 6, 7, 8} → {1, 2, 3, 4}` defined as:
`g = {(5, 4), (6, 3), (7, 4), (8, 2)}`
From the given definition of `g`, it is seen that g is a many one function as: `g(5) = g(7) = 4`.
`:. g` is not one-one,
Hence, function g does not have an inverse.

(iii) `h: {2, 3, 4, 5} → {7, 9, 11, 13}` defined as:
`h = {(2, 7), (3, 9), (4, 11), (5, 13)}`
It is seen that all distinct elements of the set `{2, 3, 4, 5}` have distinct images under ` h`.
`:.` Function h is one-one.
Also, h is onto since for every element `y` of the set `{7, 9, 11, 13}`, there exists an element `x` in the set `{2, 3, 4, 5}` such that `h(x) = y`.
Thus, `h` is a one-one and onto function. Hence, `h` has an inverse.
544.

Show that `f: [-1, 1 ] to R`, given by `f(x) = (x)/((x + 2))` is one-one. Find the inverse of the function `f: [-1, 1] to ` Range `f`. ( Hint: For `y in ` Range `f, y = f(x) = (x)/(x+ 2)`, for some `x` in `[-1, 1]`, i.e., `x = (2y)/((1-y))`)

Answer» In `f : [-1, 1] to R , f(x) = (x)/( x+ 2)`
Let `x, y in [-1, 1]`
and `f(x) = f(y)`
`rArr (x)/(x + 2) = (y)/(y +2) rArr xy + 2y = xy = 2y`
`rArr 2x = 2y rArr x =y `
`therefore f ` is one- one.
Let `f(x) = y` where `y in R`
`rArr (x)/(x + 2) = y rArr x = xy + 2y `
`rArr x (1 -y) = 2y rArr x = (2y )/(1-y)`
`therefore ` Range of `f= R- {1}`
Let, In `g : ` range of ` f to [-1, 1]` is defined as `g(y) = ( 2y )/(1-y), y ne 1`.
Now `(gof) (x) = g [f(x) ] = g((x)/( x+2))`
`" " = (2((x)/( x+ 2))) /( 1- ((x)/(x + 2))) = (2x)/(x + 2 - x ) = (2x)/( 2) = x`
and `(fog) (x) = f [g(x) ] = f((2x)/( 1-x))`
`" " ((2x)/( 1-x))/(( 2x)/(1-x)+ 2)= (2x)/( 2x + 2 - 2x) = (2x)/(2) = x `
`therefore gof = fog = I_R`
`rArr f ^(-1) = g`
`rArr f^(-1)(y) = (2y)/( 1-y ) , y ne 1`
545.

Consider `f: R->R`given by `f(x) = 4x + 3`. Show that `f` is invertible. Find the inverse of `f`.

Answer» `f: R → R` is given by,
`f(x) = 4x + 3`
Let `f(x) = f(y)`
`=>4x+3 = 4y+3`
`=>4x=4y`
`=>x = y`
`:. f` is a one-one function.
For `y in R`,
Let `y = 4x+3`
`:. x = (y-3)/4`
Now, `f(x) = f((y-3)/4) = 4((y-3)/4)+3 = y`
`:. f` is an onto function.
Let `g:R->R` such that `g(x) = (y-3)/4`
Then,
`gof(x) = g(f(x)) = ((4x+3)-3 )/4 = x`
`fog(y) = f(g(y)) = 4((y-3)/4)+3 = y`
`:. gof = fog = I_R`
Hence, `f` is invertible and the inverse of f is given by `f^-1(y)=g(y)=(y-3)/4`.
546.

Consider `f: R->R`given by `f(x) = 4x + 3`. Show that f is invertible. Find the inverse of f.

Answer» In `f: R to R, f(x) = 4x + 3`
Let `x, y in R and f(x) = f(y)`
`rArr 4x + 3 = 4y + 3`
`rArr 4x = 4y rArr x =y `
` therefore f` is one-one.
Again, let `f(x) = y ` where `y in R`
`rArr " " 4x + 3 = y rArr 4x = y - 3 `
`rArr " "x = ( y -3)/( 4) `
Now for each ` y in R, x = (y - 3)/(4) in R ` in such that
`f(x) = f((y -3)/(4))= 4((y-3)/( 4)) + 3 = y`
`therefore f ` is onto.
Therefore, `f` is one-one onto function ` rArr f` is invertible.
`therefore f^(-1) : R to R ` is defined as `f^(-1)(y) = (y-3)/(4)`.
547.

If `f: R->R`be given by `f(x)=(3-x^3)^(1//3)`, then `fof(x)`isA. `x^(1//3)`B. `x^(3)`C. `x`D. `(3-x^(3))`

Answer» Correct Answer - c
`f: R to R and f(x) = (3-x^(3))^(1//3)`
`" " (fof) (x) = f{f(x)}`
`" " = f{(3-x^(3))^(1//3)}`
`" " = [ 3-{(3-x^(3))^(1//3) }^(3)]^(1//3) = x `
548.

Let `f: R-{-4/3}->R`be a function as `f(x)=(4x)/(3x+4)`. The inverse of f is map, `g: R a ngef->R-{-4/3}`given by.(a) `g(y)=(3y)/(3-4y)` (b) `g(y)=(4y)/(4-3y)`(c) `g(y)=(4y)/(3-4y)` (d) `g(y)=(3y)/(4-3y)`A. `g(y) = ( 3y)/( 3-4y)`B. `g(y)= ( 4y )/( 4-3y)`C. `g(y) = ( 4y)/( 4-3y)`D. `g(y) = ( 4y)/( 3-4y) `

Answer» Correct Answer - b
In `f: R - {- (4)/(3) } to R`,
` f(x) = ( 4x)/( 3x + 4) AA x in R - {-(4)/(3)}`
Let for `y in R, x in R - {-(4)/(3)}` is such that
`" " f(x)=y `
`rArr " " (4x)/( 3x + 4) = y rArr 4x = 3xy + 4y`
`rArr x ( 4-3y) = 4y rArr x = (4y)/( 3-4y) `
Let, in `g: f ` range of `f to R - {- (4)/(3)}, g(y) = ( 4y )/( 3-4y )`
Now `(gof) (x) = g{f(x)} = g((4x)/( 3x + 4))`
`" " = (4((4x)/( 3x+ 4)))/( 4-3((4x )/( 3x + 4))) = ( 16x )/(12 x + 16 - 12x`
`" " = ( 16x)/( 16) = x`
and `(fog) (y) = f[g(y) ] = f[ ( 4y)/( 4-3y)]`
`" " = ( 4(( 4y)/(3x + 4)))/( 3(( 4y )/( 4- 3y ))+4)`
`" " = ( 16y )/( 12y + 16 - 12y ) = ( 16y)/(16) = y`
`therefore " " gof = I_(R- {- (4)/(3)} ) and fog = I_R`
` therefore f^(-1) = g`.
549.

Two person `A and B` take turns in throwing a pair of dice. The first person to through 9 from both dice will win the game. If A throwns fisrt then the probability that B wins the game is.

Answer» Total number of ways sum of both dice can come `9 = 4`
Total number of combinations of both dice `= 6**6 = 36`
`:.` Probability of winnining, `P(W) = 4/36 = 1/9`
Probability of losing, `P(L) = 1-1/9 = 8/9`
As A starts first probability of B winning in first attempt`= 1/9**8/9`
Probability of B winning in second attempt `= 8/9**8/9**8/9**1/9=(8/9)^3**1/9`
Probability of B winning in third attempt `= (8/9)^5**1/9`
`:.` Probability of B winning `P(B)= 1/9(8/9+(8/9)^3+(8/9)^5+...)`
`P(B)= 1/9((8/9)/(1-(8/9)^2)) =(81**8)/(17**81) = 8/17`
550.

Find the range of`f(x)=tan^(-1)sqrt((x^2-2x+2))`

Answer» Correct Answer - `[pi//4,pi//2)`
`f(x)=tan^(-1)(sqrt((x-1)^(2)+1))`
Now, `(x-1)^(2) +1 in [1,oo)`
or `tan^(-1)(sqrt((x-1)^(2)+1))in [(pi)/(4),(pi)/(2))`