Saved Bookmarks
| 1. |
Find the possible values of`sqrt(|x|-2)`(ii) `sqrt(3-|x-1|)`(iii) `sqrt(4-sqrt(x^2))` |
|
Answer» (i) `sqrt(|x|-2) ` We know that square roots are defined for non-negative values only. It implies that we must have ` |x|-2 ge 0`. Thus, `sqrt(|x|-2) ge 0` (ii) `sqrt(3-|x-1|)` is defined when `3-|x-1| ge 0` But the maximum value of `3-|x-1|` is 3, when `|x-1|` is 0. Hence, for `sqrt(3-|x-1|)` to get defined, ` 0 le 3-|x-1|le 3`. Thus, `sqrt(3-|x-1|) in [0, sqrt(3)]` Alternatively, ` |x-1| ge 0` `implies -|x-1| le 0` `implies 3-|x-1| le 3` But for `sqrt(3-|x-1|)` to get defined, we must have `0 le 3 -|x-1| le3` `implies 0 le sqrt(3-|x-1|) le sqrt(3)` (iii) `sqrt(4-sqrt(x^(2)))=sqrt(4-|x|)` `|x| ge 0` `implies -|x| le 0` `implies4-|x| le 4` But for `sqrt(4-|x|)` to get defined `0 le 4 -|x| le 4` ` :. 0 le sqrt(4-|x|) le 2` |
|